def show_results(result): """ visualizes the result of the parameter search. Parameters: result - list of result dictionaries. """ import numpy rates = numpy.sort([r['source_rate'] for r in result]) weights = numpy.sort([r['weight'] for r in result]) neuron_rates = numpy.zeros((len(rates), len(weights))) for r_i in range(len(rates)): for w_i in range(len(weights)): neuron_rates[r_i, w_i] = [r['neuron_rate'] for r in result if (r['source_rate'] == rates[r_i]) and (r['weight'] == weights[w_i])][0] import NeuroTools.plotting as plotting pylab = plotting.get_display(True) pylab.rcParams.update(plotting.pylab_params()) subplot = pylab.imshow(neuron_rates, interpolation = 'nearest', origin = 'lower') plotting.set_labels(subplot.get_axes(), xlabel = 'rate', ylabel = 'weight') pylab.colorbar() # could add fancy xticks and yticks here import tempfile, os (fd, figfilename) = tempfile.mkstemp(prefix = 'parameter_search_result', suffix = '.png', dir = os.getcwd()) pylab.gcf().savefig(figfilename)
def show_results(result): """ visualizes the result of the parameter search. Parameters: result - list of result dictionaries. """ import numpy t_smooth = 100. # ms. integration time to show fiber activity snrs = numpy.sort([r['snr'] for r in result]) neuron_rates = numpy.zeros(len(snr)) for snr_i in range(len(snrs)): neuron_rates[r_i] = [ r['neuron_rate'] for r in result if (r['source_rate'] == snrs[snr_i]) ][0] import NeuroTools.plotting as plotting pylab = plotting.get_display(True) pylab.rcParams.update(plotting.pylab_params()) print rates, neuron_rates subplot = pylab.imshow(neuron_rates, interpolation='nearest', origin='lower') plotting.set_labels(subplot.get_axes(), xlabel='rate', ylabel='weight') pylab.colorbar() # could add fancy xticks and yticks here import tempfile, os (fd, figfilename) = tempfile.mkstemp(prefix='parameter_search_result', suffix='.png', dir=os.getcwd()) pylab.gcf().savefig(figfilename)
############# MAKING FIGURE ############################ from NeuroTools.plotting import pylab_params from numpy import zeros, where, arange pylab.close("all") pylab.ioff() # pylab.ion() # """ Figure Prints to a figure the mean firing rate * in (x,y) accross time during the stimulation and * in t accross positions within the center for the output (ON and OFF) and for the different parameter values. """ pylab.rcParams.update(pylab_params(fig_width_pt=497.9)) # , text_fontsize=8)) pylab.figure(num=1, dpi=300, facecolor="w", edgecolor="k") x = params["position"][0] y = params["position"][1] # Lmargin, Rmargin, dmargin, umargin = 0.05, 0.15, 0.05, 0.05 # pylab.axes([Lmargin, dmargin , 1.0 - Rmargin- Lmargin,1.0-umargin-dmargin]) # [left, bottom, width, height] # pylab.subplot(131) pylab.axes([0.1, 0.33, 0.3 / 1.61, 0.3]) # [left, bottom, width, height] pylab.scatter(x, y, c=params["amplitude"], faceted=False) # , edgecolors='none' pylab.title("Input", fontsize="small") pylab.axis("equal") pylab.subplot(232) pylab.plot(lower_edges[:-1], temporal_ON) pylab.title("time course (ROI) ", fontsize="small") # pylab.title('time course ON',fontsize = 'small')
############# MAKING FIGURE ############################ from NeuroTools.plotting import pylab_params from numpy import zeros, where, arange pylab.close('all') pylab.ioff() #pylab.ion() # """ Figure Prints to a figure the mean firing rate * in (x,y) accross time during the stimulation and * in t accross positions within the center for the output (ON and OFF) and for the different parameter values. """ pylab.rcParams.update(pylab_params(fig_width_pt=497.9)) #, text_fontsize=8)) pylab.figure(num=1, dpi=300, facecolor='w', edgecolor='k') x = params['position'][0] y = params['position'][1] #Lmargin, Rmargin, dmargin, umargin = 0.05, 0.15, 0.05, 0.05 #pylab.axes([Lmargin, dmargin , 1.0 - Rmargin- Lmargin,1.0-umargin-dmargin]) # [left, bottom, width, height] #pylab.subplot(131) pylab.axes([0.1, 0.33, .3 / 1.61, .3]) # [left, bottom, width, height] pylab.scatter(x, y, c=params['amplitude'], faceted=False) #, edgecolors='none' pylab.title('Input', fontsize='small') pylab.axis('equal') pylab.subplot(232) pylab.plot(lower_edges[:-1], temporal_ON) pylab.title('time course (ROI) ', fontsize='small') #pylab.title('time course ON',fontsize = 'small')