示例#1
0
def run(parameters, sim_list):
    sim_time = parameters.sim_time
    spike_interval = parameters.spike_interval

    stgen = StGen()
    seed = parameters.seed
    stgen.seed(seed)

    model_parameters = ParameterSet({
        'system':
        parameters.system,
        'input_spike_times':
        stgen.poisson_generator(1000.0 / spike_interval,
                                t_stop=sim_time,
                                array=True),
        'cell_type':
        parameters.cell.type,
        'cell_parameters':
        parameters.cell.params,
        'plasticity': {
            'short_term': None,
            'long_term': None
        },
        'weights':
        parameters.weights,
        'delays':
        parameters.delays,
    })

    networks = MultiSim(sim_list, SimpleNetwork, model_parameters)
    networks.run(sim_time)
    spike_data = networks.get_spikes()
    vm_data = networks.get_v()
    networks.end()
    return spike_data, vm_data, model_parameters
示例#2
0
 def build_input(self, stim_duration=4000, omega=20, angle=0):
     self.mpi_print("Creating or loading the LGN input ....")
     f0    = 0
     f1    = 60
     angle = (angle/360.) * 2 * numpy.pi 
     time  = numpy.arange(0, stim_duration, 1)
     spk   = StGen(seed=5423689)
     st    = []
     for i in range(self.N):
        for j in range(self.N):            
           signal    = f0 + f1*(numpy.cos(omega*.001*time+numpy.pi*(i*numpy.cos(angle) + j*numpy.sin(angle))/(self.N*1.))+1)
           spk_times = spk.inh_poisson_generator(signal, time, stim_duration, array=True)
           st.append(spk_times)
     for cell, spikes in zip(self.LGN, st):
       cell.spike_times = spikes      
示例#3
0
文件: network.py 项目: colliauXD/PyCB
  def build_moving_bar(self, stim_duration=4000, omega=5, save=None):
      if rank()==0: print "Creating or loading the LGN input ...."
      f0   = 100
      time = numpy.arange(0, stim_duration, 1)
      spk  = StGen(seed=5423689)
      st   = []
      for i in range(self.N):
         for j in range(self.N):
	   signal    = f0/(1+numpy.exp(-100*(numpy.cos(omega*.001*time+numpy.pi*i/(self.N*1.))-.95)))
           spk_times = spk.inh_poisson_generator(signal, time, stim_duration, array=True)
	   st.append(spk_times)
      for cell,spikes in zip(self.LGN, st):
	cell.spike_times = spikes
      if save:
	cPickle.dump(st, open(save,'w'))
示例#4
0
文件: network.py 项目: colliauXD/PyCB
  def build_static_bar(self, f0=100,stim_start=0, stim_duration=4000, phi=0, save=None):
      if rank()==0: print "Creating or loading the LGN input: static bar at %s rad...."%phi
      sx=.7*self.N
      sy=0.1*self.N
      n0=(self.N-1)/2.
      spk  = StGen(seed=5423689)
      st   = []
      for i in range(self.N):
         for j in range(self.N):
           bar_fr=f0*np.exp(-((i-n0)*np.cos(phi)+(j-n0)*np.sin(phi))**2/sx**2-(-(i-n0)*np.sin(phi)+(j-n0)*np.cos(phi))**2/sy**2)
           spk_times = spk.poisson_generator(bar_fr, 0, stim_duration, array=True)
	   st.append(spk_times)
      for cell,spikes in zip(self.LGN, st):
	cell.spike_times = spikes+stim_start
      if save:
	cPickle.dump(st, open(save,'w'))
def run(parameters, sim_list):
    sim_time = parameters.sim_time
    spike_interval = parameters.spike_interval

    stgen = StGen()
    seed = parameters.seed
    stgen.seed(seed)

    model_parameters = ParameterSet({
        'system': parameters.system,
        'input_spike_times': stgen.poisson_generator(1000.0/spike_interval, t_stop=sim_time, array=True),
        'cell_type': parameters.cell.type,
        'cell_parameters': parameters.cell.params,
        'plasticity': { 'short_term': None, 'long_term': None },
        'weights': parameters.weights,
        'delays': parameters.delays,
    })

    networks = MultiSim(sim_list, SimpleNetwork, model_parameters)
    networks.run(sim_time)
    spike_data = networks.get_spikes()
    vm_data = networks.get_v()
    networks.end()
    return spike_data, vm_data, model_parameters
示例#6
0
def inh_poisson_spikes(rate, t, t_stop, n_rep=1, seed=None):
    '''
    Returns a SpikeTrain whose spikes are a realization of an inhomogeneous 
    poisson process (dynamic rate). The implementation uses the thinning 
    method, as presented in the references (see neurotools).
    
    From Professor David Heeger 2000 - "Poisson Model of Spike Generation" 
    
    Generating Poisson Spike Trains
    There are two commonly used procedures for numerically generating Poisson 
    spike trains. The first approach is based on the approximation in Eq. 2 
   
    P{1 spike during the interval(t-dt/2,t+dt/2)}=r(t)dt                     (2) 
    
    for the probability of a spike occurring during a short time interval. For 
    the homogeneous Poisson process, this expression can be rewritten
    (removing the time dependence) as
    
    P{1 spike during dt} ~ rdt
    
    This equation can be used to generate a Poisson spike train by first 
    subdividing time into a bunch of short intervals, each of duration dt. Then 
    generate a sequence of random numbers x[i] , uniformly distributed between 
    0 and 1. For each interval, if x[i] <=rdt, generate a spike. Otherwise, 
    no spike is generated. This procedure is appropriate only when dt is very 
    small, i.e, only when rdt<<1. Typically, dt = 1 msec should suffice. The 
    problem with this approach is that each spike is assigned a discrete 
    time bin, not a continuous time value.
    
    The second approach for generating a homogeneous Poisson spike train, 
    that circumvents this problem, is simply to choose interspike intervals 
    randomly from the exponential distribution. Each successive spike time is 
    given by the previous spike time plus the randomly drawn interspike 
    interval . Now each spike is assigned a continuous time value instead of a 
    discrete time bin. However, to do anything with the simulated spike train 
    (e.g., use it to provide synaptic input to another simulated neuron), it is
     usually much more convenient to discretely sample the spike train
    (e.g., in 1 msec bins), which makes this approach for generating the spike 
    times equivalent to the first approach described above.
    
    I use neruotools 
    
    
    Inputs:
             rate   - an array of the rates (Hz) where rate[i] is active on interval 
                     [t[i],t[i+1]] (if t=t.append(t_stop)
            t      - an array specifying the time bins (in milliseconds) at which to 
                     specify the rate
            t_stop - length of time to simulate process (in ms)
            n_rep  - number times to repeat spike pattern  
            seed   - seed random generator
    
    Returns: 
            spike  - array of spikes
            
    Examples:
          spike_train_dyn = misc.inh_poisson_generator(rate = np.array([50., 80., 30.]),
                                                  t = [0., 1000., 2000.],
                                                  t_stop = 2.5,
                                                  array = False)

      
    '''
    t = numpy.array(t)
    rate = numpy.array(rate)

    times = []
    rates = []
    for i in range(n_rep):
        times = concatenate((times, t + t_stop * i / n_rep), 1)
        rates = concatenate((rates, rate), 1)

    stgen = StGen(seed=seed)
    spikes = stgen.inh_poisson_generator(rate=rates,
                                         t=times,
                                         t_stop=t_stop,
                                         array=True)

    return spikes
示例#7
0
文件: test_stdp.py 项目: tclose/PyNN
import numpy
from time import time
from pyNN import nest, neuron, pcsim
from pyNN.utility import MultiSim
from NeuroTools.parameters import ParameterSet
from NeuroTools.stgen import StGen
from simple_network import SimpleNetwork
from calc import STDPSynapse

PLOT_FIGURES = True
sim_list = [nest, neuron, pcsim]
sim_time = 200.0
spike_interval = 20.0  # ms
recording_interval = 1.0
stgen = StGen()
seed = int(1e9 * (time() % 1))
stgen.seed(seed)

parameters = ParameterSet({
    'system': {
        'timestep': 0.01,
        'min_delay': 0.1,
        'max_delay': 10.0
    },
    'input_spike_times':
    stgen.poisson_generator(rate=1000.0 / spike_interval,
                            t_stop=sim_time,
                            array=True),
    'trigger_spike_times':
    stgen.poisson_generator(rate=1000.0 / spike_interval,
示例#8
0
class NetManagerPyNN(NetworkHandler):

    log = logging.getLogger("NetManagerPyNN")

    logging.basicConfig(level=logging.INFO,
                        format="%(name)-19s %(levelname)-5s - %(message)s")

    populations = {}
    projections = {}

    projWeightFactor = {}
    projSynapseDynamics = {}
    projConns = []

    input_populations = {}
    input_projections = {}

    inputCellGroups = {}
    inputWeights = {}
    inputSynapseDynamics = {}
    inputConns = []

    inputCount = {}

    my_simulator = "neuron"

    my_stgen = StGen()

    maxSimLength = -1  # Needed for generating input spike time array...

    def __init__(self, my_simulator="neuron"):
        self.log.info("Using simulator: " + my_simulator)
        self.my_simulator = my_simulator
        exec("from pyNN.%s import *" % self.my_simulator)

        #setup()

    def setSeed(self, seed):
        self.my_stgen.seed(seed)

    def setMaxSimLength(self, length):
        self.maxSimLength = length

    #
    #  Overridden from NetworkHandler
    #
    def handlePopulation(self, cellGroup, cellType, size):

        exec("from pyNN.%s import *" % self.my_simulator
             )  # Does this really need to be imported every time?

        if (size >= 0):
            sizeInfo = ", size " + str(size) + " cells"

            self.log.info("Creating population: " + cellGroup +
                          ", cell type: " + cellType + sizeInfo)

            standardCell = IF_cond_alpha

            try:
                # Try importing a files named after that cell

                exec("from %s import *" % cellGroup)
                self.log.info("-- Imported cell props from: " + cellGroup)
                exec("standardCell = %s" % cellGroup)

            except ImportError:
                self.log.info("-- Could not find file for: " + cellGroup)
                # Else check if it refers to a standard type
                if (cellType.count("IF_cond_alpha") >= 0):
                    standardCell = IF_cond_alpha
                if (cellType.count("IF_cond_exp") >= 0):
                    standardCell = IF_cond_exp
                #TODO: more...

            pop = Population((size, ), standardCell, label=cellGroup)
            self.populations[cellGroup] = pop

        else:

            self.log.error("Population: " + cellGroup + ", cell type: " +
                           cellType +
                           " specifies no size. Will lead to errors!")

    #
    #  Overridden from NetworkHandler
    #
    def handleLocation(self, id, cellGroup, cellType, x, y, z):
        self.printLocationInformation(id, cellGroup, cellType, x, y, z)
        addr = int(id)
        self.populations[cellGroup][addr].position = (x, y, z)

    #
    #  Overridden from NetworkHandler
    #
    def handleConnection(self, projName, id, source, target, synapseType, \
                                                    preCellId, \
                                                    postCellId, \
                                                    preSegId = 0, \
                                                    preFract = 0.5, \
                                                    postSegId = 0, \
                                                    postFract = 0.5, \
                                                    localInternalDelay = 0, \
                                                    localPreDelay = 0, \
                                                    localPostDelay = 0, \
                                                    localPropDelay = 0, \
                                                    localWeight = 1, \
                                                    localThreshold = 0):

        exec("from pyNN.%s import *" % self.my_simulator
             )  # Does this really need to be imported every time?

        self.printConnectionInformation(projName, id, source, target,
                                        synapseType, preCellId, postCellId,
                                        localWeight)

        if (len(self.projConns) == 0):

            try:
                exec("from %s import synapse_dynamics as sd" % synapseType)
                exec("from %s import gmax" % synapseType)

            except ImportError:
                sd = None
                gmax = 1e-7

            self.projWeightFactor[
                projName] = gmax * 1e3  # TODO: Check correct units!!!
            self.projSynapseDynamics[projName] = sd

        delayTotal = float(localInternalDelay) + float(localPreDelay) + float(
            localPostDelay) + float(localPropDelay)

        srcCell = self.populations[source][int(preCellId)]
        tgtCell = self.populations[target][int(postCellId)]
        weight = float(localWeight) * self.projWeightFactor[projName]

        self.log.info("-- Conn id: " + str(id) + ", delay: " +
                      str(delayTotal) + ", localWeight: " + str(localWeight) +
                      ", weight: " + str(weight) + ", threshold: " +
                      str(localThreshold))

        self.projConns.append([
            self.populations[source].id_to_index(srcCell),
            self.populations[target].id_to_index(tgtCell), weight, delayTotal
        ])

    #
    #  Overridden from NetworkHandler
    #
    def finaliseProjection(self, projName, source, target):

        exec("from pyNN.%s import *" % self.my_simulator
             )  # Does this really need to be imported every time?

        connector = FromListConnector(self.projConns)
        proj = Projection(self.populations[source],
                          self.populations[target],
                          connector,
                          target='excitatory',
                          label=projName,
                          synapse_dynamics=self.projSynapseDynamics[projName])
        self.projections[projName] = proj
        self.projConns = []

    #
    #  Overridden from NetworkHandler
    #
    def handleInputSource(self, inputName, cellGroup, inputProps=[], size=-1):
        self.printInputInformation(inputName, cellGroup, inputProps, size)

        exec("from pyNN.%s import *" % self.my_simulator
             )  # Does this really need to be imported every time?

        if size < 0:
            self.log.error(
                "Error at handleInputSource! Need a size attribute in sites element to create spike source!"
            )
            return

        if inputProps.keys().count(
                "synaptic_mechanism") > 0 and inputProps.keys().count(
                    "frequency") > 0:

            freq = float(inputProps["frequency"])

            if (self.maxSimLength < 0):
                raise ValueError, "The value of maxSimLength must be set!"

            numberExp = int(float(self.maxSimLength) * freq)

            print "Number of spikes expected in %f ms at %fHz: %d" % (
                self.maxSimLength, freq, numberExp)

            spike_times = self.my_stgen.poisson_generator(
                rate=freq * 1000, t_stop=self.maxSimLength, array=True)

            #TODO: check units in nml files and put correct conversion here
            input_population = Population(size,
                                          SpikeSourceArray,
                                          {'spike_times': spike_times},
                                          label=inputName)

            for ip in input_population:

                spikes = self.my_stgen.poisson_generator(
                    rate=freq * 1000, t_stop=self.maxSimLength, array=True)
                ip.spike_times = spikes
                #print "--------------------------"
                #print "Spike times: "+ str(ip.spike_times)
                #print "--------------------------"

            self.inputCellGroups[inputName] = cellGroup
            self.input_populations[inputName] = input_population

            synaptic_mechanism = inputProps["synaptic_mechanism"]

            try:
                exec("from %s import synapse_dynamics as sd" %
                     synaptic_mechanism)
                exec("from %s import gmax" % synaptic_mechanism)

            except ImportError:
                sd = None
                gmax = 1e-7  # TODO: Check correct units!!!

            self.inputWeights[
                inputName] = gmax * 1e3  # TODO: Check correct units!!!
            self.inputSynapseDynamics[inputName] = sd

    #
    #  Overridden from NetworkHandler
    #
    def handleSingleInput(self, inputName, cellId, segId=0, fract=0.5):

        exec("from pyNN.%s import *" % self.my_simulator
             )  # Does this really need to be imported every time?

        if self.inputCount.keys().count(inputName) == 0:
            self.inputCount[inputName] = 0

        weight = float(self.inputWeights[inputName])

        self.log.warn("Associating input: %i from: %s to cell %i, weight: %f" %
                      (self.inputCount[inputName], inputName, cellId, weight))

        srcInput = self.input_populations[inputName][(
            self.inputCount[inputName], )]

        tgtCell = self.populations[self.inputCellGroups[inputName]][(
            int(cellId), )]

        #TODO use max cond*weight for weight here...
        connTuple = (
            self.input_populations[inputName].id_to_index(srcInput)[0],
            self.populations[self.inputCellGroups[inputName]].id_to_index(
                tgtCell)[0], weight, 0.1)
        self.inputConns.append(connTuple)

        self.inputCount[inputName] += 1

    #
    #  Overridden from NetworkHandler
    #
    def finaliseInputSource(self, inputName):

        exec("from pyNN.%s import *" % self.my_simulator
             )  # Does this really need to be imported every time?

        label = "%s_projection" % inputName

        input_population = self.input_populations[inputName]
        cellGroup = self.inputCellGroups[inputName]
        print self.inputConns
        connector = FromListConnector(self.inputConns)
        sd = self.inputSynapseDynamics[inputName]

        self.log.info(
            "-- Adding connections for %s: %s from %s to %s with %s" %
            (inputName, str(connector), str(input_population),
             str(self.populations[cellGroup]), str(sd)))

        input_proj = Projection(
            input_population,
            self.populations[cellGroup],
            connector,
            target='excitatory',
            label=label,
            synapse_dynamics=self.inputSynapseDynamics[inputName])

        self.input_projections[inputName] = input_proj
        self.inputConns = []
if my_simulator == 'neuron' or my_simulator == 'nest' :
    voltDistr = RandomDistribution('uniform',[-65,-50],rng)

    cellsA.randomInit(voltDistr)
    cellsB.randomInit(voltDistr)

freq = 150 # Hz

number = int(tstop*freq/1000.0)

print "Number of spikes expected in %d ms at %dHz: %d"%(tstop, freq, number)


from NeuroTools.stgen import StGen
stgen = StGen()
stgen.seed(seed)

spike_times = stgen.poisson_generator(rate=freq, t_stop=tstop, array=True)

input_population  = Population(cellNumA, SpikeSourceArray, {'spike_times': spike_times}, label="inputsToA") 

for i in input_population:
    i.spike_times = stgen.poisson_generator(rate=freq, t_stop=tstop, array=True)
    print "spike_times: " +str(i.spike_times)


inputConns = []

for i in range(0,cellNumA):
    inputConns.append([i, i, 0.1, 3.0])
示例#10
0
import numpy
from time import time
from pyNN import nest, neuron, pcsim
from pyNN.utility import MultiSim
from NeuroTools.parameters import ParameterSet
from NeuroTools.stgen import StGen
from simple_network import SimpleNetwork
from calc import STDPSynapse

PLOT_FIGURES = True
sim_list = [nest, neuron, pcsim]
sim_time = 200.0
spike_interval = 20.0 # ms
recording_interval = 1.0
stgen = StGen()
seed = int(1e9*(time()%1))
stgen.seed(seed)

parameters = ParameterSet({
    'system': { 'timestep': 0.01, 'min_delay': 0.1, 'max_delay': 10.0 },
    'input_spike_times': stgen.poisson_generator(rate=1000.0/spike_interval, t_stop=sim_time, array=True),
    'trigger_spike_times': stgen.poisson_generator(rate=1000.0/spike_interval, t_stop=sim_time, array=True),
    'cell_type': 'IF_curr_exp',
    'cell_parameters': { 'tau_refrac': 10.0, 'tau_m': 2.0, 'tau_syn_E': 1.0 },
    'plasticity': { 'short_term': None,
                    'long_term': {
                        'timing_dependence': { 'model': 'SpikePairRule',
                                               'params': { 'tau_plus': 20.0,
                                                           'tau_minus': 20.0 }},
                        'weight_dependence': { 'model': 'AdditiveWeightDependence',
示例#11
0
if my_simulator == 'neuron' or my_simulator == 'nest':
    voltDistr = RandomDistribution('uniform', [-65, -50], rng)

    cellsA.randomInit(voltDistr)
    cellsB.randomInit(voltDistr)

freq = 150  # Hz

number = int(tstop * freq / 1000.0)

print "Number of spikes expected in %d ms at %dHz: %d" % (tstop, freq, number)

from NeuroTools.stgen import StGen

stgen = StGen()
stgen.seed(seed)

spike_times = stgen.poisson_generator(rate=freq, t_stop=tstop, array=True)

input_population = Population(cellNumA,
                              SpikeSourceArray, {'spike_times': spike_times},
                              label="inputsToA")

for i in input_population:
    i.spike_times = stgen.poisson_generator(rate=freq,
                                            t_stop=tstop,
                                            array=True)
    print "spike_times: " + str(i.spike_times)

inputConns = []
示例#12
0
def inh_poisson_spikes(rate, t, t_stop, n_rep=1 ,seed=None):   
    '''
    Returns a SpikeTrain whose spikes are a realization of an inhomogeneous 
    poisson process (dynamic rate). The implementation uses the thinning 
    method, as presented in the references (see neurotools).
    
    From Professor David Heeger 2000 - "Poisson Model of Spike Generation" 
    
    Generating Poisson Spike Trains
    There are two commonly used procedures for numerically generating Poisson 
    spike trains. The first approach is based on the approximation in Eq. 2 
   
    P{1 spike during the interval(t-dt/2,t+dt/2)}=r(t)dt                     (2) 
    
    for the probability of a spike occurring during a short time interval. For 
    the homogeneous Poisson process, this expression can be rewritten
    (removing the time dependence) as
    
    P{1 spike during dt} ~ rdt
    
    This equation can be used to generate a Poisson spike train by first 
    subdividing time into a bunch of short intervals, each of duration dt. Then 
    generate a sequence of random numbers x[i] , uniformly distributed between 
    0 and 1. For each interval, if x[i] <=rdt, generate a spike. Otherwise, 
    no spike is generated. This procedure is appropriate only when dt is very 
    small, i.e, only when rdt<<1. Typically, dt = 1 msec should suffice. The 
    problem with this approach is that each spike is assigned a discrete 
    time bin, not a continuous time value.
    
    The second approach for generating a homogeneous Poisson spike train, 
    that circumvents this problem, is simply to choose interspike intervals 
    randomly from the exponential distribution. Each successive spike time is 
    given by the previous spike time plus the randomly drawn interspike 
    interval . Now each spike is assigned a continuous time value instead of a 
    discrete time bin. However, to do anything with the simulated spike train 
    (e.g., use it to provide synaptic input to another simulated neuron), it is
     usually much more convenient to discretely sample the spike train
    (e.g., in 1 msec bins), which makes this approach for generating the spike 
    times equivalent to the first approach described above.
    
    I use neruotools 
    
    
    Inputs:
             rate   - an array of the rates (Hz) where rate[i] is active on interval 
                     [t[i],t[i+1]] (if t=t.append(t_stop)
            t      - an array specifying the time bins (in milliseconds) at which to 
                     specify the rate
            t_stop - length of time to simulate process (in ms)
            n_rep  - number times to repeat spike pattern  
            seed   - seed random generator
    
    Returns: 
           spike  - array of spikes
     '''       

    times=[]
    rates=[]
    t=numpy.array(t)
    for i in range(n_rep):
        times=concatenate((times,t + t_stop*i/n_rep) ,1)
        rates=concatenate((rates,rate),1)

    stgen=StGen(seed=seed) 
    spikes=stgen.inh_poisson_generator(rate = rates, t=times, t_stop=t_stop, array=True)
    
    return spikes