def test_griewank_works_proportional_fine(self): de_griewank = AgingNpDifferentialEvolution(NP=10, CR=0.5, F=0.9, age=proportional, seed=self.seed) de_griewankc = AgingNpDifferentialEvolution(NP=10, CR=0.5, F=0.9, age=proportional, seed=self.seed) AlgorithmTestCase.algorithm_run_test(self, de_griewank, de_griewankc, 'griewank')
def test_custom_works_proportional_fine(self): de_custom = AgingNpDifferentialEvolution(NP=40, F=0.5, CR=0.9, age=proportional, seed=self.seed) de_customc = AgingNpDifferentialEvolution(NP=40, F=0.5, CR=0.9, age=proportional, seed=self.seed) AlgorithmTestCase.algorithm_run_test(self, de_custom, de_customc, MyBenchmark())
def test_griewank_works_fine(self): de_griewank = AgingNpDifferentialEvolution(NP=10, D=self.D, nFES=self.nFES, nGEN=self.nGEN, CR=0.5, F=0.9, benchmark='griewank', seed=self.seed) de_griewankc = AgingNpDifferentialEvolution(NP=10, D=self.D, nFES=self.nFES, nGEN=self.nGEN, CR=0.5, F=0.9, benchmark='griewank', seed=self.seed) AlgorithmTestCase.algorithm_run_test(self, de_griewank, de_griewankc)
def test_Custom_works_fine(self): de_custom = AgingNpDifferentialEvolution(D=self.D, NP=40, nFES=self.nFES, nGEN=self.nGEN, F=0.5, CR=0.9, benchmark=MyBenchmark(), seed=self.seed) de_customc = AgingNpDifferentialEvolution(D=self.D, NP=40, nFES=self.nFES, nGEN=self.nGEN, F=0.5, CR=0.9, benchmark=MyBenchmark(), seed=self.seed) AlgorithmTestCase.algorithm_run_test(self, de_custom, de_customc)
# This is temporary fix to import module from parent folder # It will be removed when package is published on PyPI import sys sys.path.append('../') # End of fix import random from NiaPy.algorithms.basic import AgingNpDifferentialEvolution from NiaPy.algorithms.basic.de import bilinear from NiaPy.task.task import StoppingTask, OptimizationType from NiaPy.benchmarks import Sphere # we will run Differential Evolution for 5 independent runs for i in range(5): task = StoppingTask(D=10, nFES=10000, optType=OptimizationType.MINIMIZATION, benchmark=Sphere()) algo = AgingNpDifferentialEvolution(NP=40, F=0.63, CR=0.9, Lt_min=3, Lt_max=7, omega=0.2, delta_np=0.1, age=bilinear) best = algo.run(task=task) print('%s -> %s' % (best[0].x, best[1])) # vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3
def test_type_parameters(self): d = AgingNpDifferentialEvolution.typeParameters() self.assertIsNotNone(d.pop('Lt_min', None)) self.assertIsNotNone(d.pop('Lt_max', None)) self.assertIsNotNone(d.pop('delta_np', None)) self.assertIsNotNone(d.pop('omega', None))
def test_algorithm_info(self): self.assertIsNotNone(AgingNpDifferentialEvolution.algorithmInfo())