def test_FA_iters_fine(self):
     task = Task(D=10,
                 nGEN=1000,
                 optType=OptimizationType.MINIMIZATION,
                 benchmark=Sphere())
     algo = FireflyAlgorithm(task=task, NP=25)
     algo.run()
     iters = algo.task.iters()
     self.assertEqual(iters, 1000)
 def test_FA_evals_fine(self):
     task = Task(D=10,
                 nFES=1000,
                 optType=OptimizationType.MINIMIZATION,
                 benchmark=Sphere())
     algo = FireflyAlgorithm(task=task, NP=25)
     algo.run()
     evals = algo.task.evals()
     self.assertEqual(evals, 1000)
示例#3
0
文件: test_fa.py 项目: Flyzoor/NiaPy
class FATestCase(TestCase):
    def setUp(self):
        self.fa = FireflyAlgorithm(10, 20, 1000, 0.5, 0.2, 1.0, MyBenchmark())

        self.fa_griewank = FireflyAlgorithm(10, 20, 1000, 0.5, 0.2, 1.0,
                                            'griewank')

    def test_works_fine(self):
        self.assertTrue(self.fa.run())

    def test_griewank_works_fine(self):
        self.assertTrue(self.fa_griewank.run())
示例#4
0
 def RunAlgorithm(self, NUM_RUNS,D,Np,nFES,BenchFunction):
     rawData = np.zeros(NUM_RUNS)
     for i in range(NUM_RUNS):
         task = StoppingTask(D=D, nFES=nFES, optType=OptimizationType.MINIMIZATION, benchmark=BenchFunction)
         algo = FireflyAlgorithm(NP=Np, alpha=0.5, betamin=0.2, gamma=1.0)
         best = algo.run(task=task)
         rawData[i] = best[1]
         print(rawData[i])
     return rawData
示例#5
0
def optimize(bench, algo):
    average_mfo = 0
    average_de = 0
    average_abc = 0
    average_pso = 0
    average_ba = 0
    average_fa = 0
    average_ga = 0

    for i in np.arange(epoch):
        mfo = MothFlameOptimizer(D=dim, NP=pop, nGEN=maxIter, benchmark=bench)
        de = DifferentialEvolution(D=dim,
                                   NP=pop,
                                   nGEN=maxIter,
                                   benchmark=bench)
        abc = ArtificialBeeColonyAlgorithm(D=dim,
                                           NP=pop,
                                           nFES=maxIter,
                                           benchmark=bench)
        pso = ParticleSwarmAlgorithm(D=dim,
                                     NP=pop,
                                     nGEN=maxIter,
                                     benchmark=bench)
        ba = BatAlgorithm(D=dim, NP=pop, nFES=maxIter, benchmark=bench)
        fa = FireflyAlgorithm(D=dim, NP=pop, nFES=maxIter, benchmark=bench)
        ga = GeneticAlgorithm(D=dim, NP=pop, nFES=maxIter, benchmark=bench)

        gen, best_de = de.run()
        gen, best_mfo = mfo.run()
        gen, best_abc = abc.run()
        gen, best_pso = pso.run()
        gen, best_ba = ba.run()
        gen, best_fa = fa.run()
        gen, best_ga = ga.run()

        average_mfo += best_de / epoch
        average_de += best_mfo / epoch
        average_abc += best_abc / epoch
        average_pso += best_pso / epoch
        average_ba += best_ba / epoch
        average_fa += best_fa / epoch
        average_ga += best_ga / epoch

    print(algo, ': DE Average of Bests over', epoch, 'run: ', average_de)
    print(algo, ': MFO Average of Bests over', epoch, 'run: ', average_mfo)
    print(algo, ': ABC Average of Bests over', epoch, 'run: ', average_abc)
    print(algo, ': PSO Average of Bests over', epoch, 'run: ', average_pso)
    print(algo, ': BA Average of Bests over', epoch, 'run: ', average_ba)
    print(algo, ': FA Average of Bests over', epoch, 'run: ', average_fa)
    print(algo, ': GA Average of Bests over', epoch, 'run: ', average_ga)

    return [
        average_de, average_mfo, average_abc, average_pso, average_ba,
        average_fa, average_ga
    ]
示例#6
0
def run_defult():
	for i in range(10):
		Algorithm = FireflyAlgorithm(D=10, NP=20, nFES=50000, alpha=0.5, betamin=0.2, gamma=1.0, benchmark=MyBenchmark())
		Best = Algorithm.run()
		plt.plot(global_vector)
		global_vector = []
		logger.info(Best)
	plt.xlabel('Number of evaluations')
	plt.ylabel('Fitness function value')
	plt.title('Convergence plot')
	plt.show()
示例#7
0
文件: run_fa.py 项目: tuahk/NiaPy
def logging_example(D=10,
                    nFES=50000,
                    seed=None,
                    optType=OptimizationType.MINIMIZATION,
                    optFunc=MinMB,
                    **no):
    task = TaskConvPrint(D=D,
                         nFES=nFES,
                         nGEN=50000,
                         optType=optType,
                         benchmark=optFunc())
    algo = FireflyAlgorithm(NP=20,
                            alpha=0.5,
                            betamin=0.2,
                            gamma=1.0,
                            seed=seed,
                            task=task)
    best = algo.run()
    logger.info('%s %s' % (best[0], best[1]))
示例#8
0
文件: run_fa.py 项目: tuahk/NiaPy
def simple_example(runs=10,
                   D=10,
                   nFES=50000,
                   seed=None,
                   optType=OptimizationType.MINIMIZATION,
                   optFunc=MinMB,
                   **no):
    for i in range(10):
        algo = FireflyAlgorithm(D=D,
                                NP=20,
                                nFES=nFES,
                                alpha=0.5,
                                betamin=0.2,
                                gamma=1.0,
                                seed=seed,
                                optType=optType,
                                benchmark=optFunc())
        Best = algo.run()
        logger.info('%s %s' % (Best[0], Best[1]))
示例#9
0
# encoding=utf8
# This is temporary fix to import module from parent folder
# It will be removed when package is published on PyPI
import sys

sys.path.append('../')
# End of fix

from NiaPy.algorithms.basic import FireflyAlgorithm
from NiaPy.util import StoppingTask, OptimizationType
from NiaPy.benchmarks import Sphere

# we will run Firefly Algorithm for 5 independent runs
for i in range(5):
    task = StoppingTask(D=10,
                        nFES=1000,
                        optType=OptimizationType.MINIMIZATION,
                        benchmark=Sphere())
    algo = FireflyAlgorithm(NP=20, alpha=0.5, betamin=0.2, gamma=1.0)
    best = algo.run(task=task)
    print('%s -> %s' % (best[0], best[1]))
示例#10
0
import logging
from NiaPy.algorithms.basic import FireflyAlgorithm

logging.basicConfig()
logger = logging.getLogger('examples')
logger.setLevel('INFO')


class MyBenchmark(object):
    def __init__(self):
        self.Lower = -11
        self.Upper = 11

    def function(self):
        def evaluate(D, sol):
            val = 0.0
            for i in range(D):
                val = val + sol[i] * sol[i]
            return val

        return evaluate


for i in range(10):

    Algorithm = FireflyAlgorithm(10, 20, 10000, 0.5, 0.2, 1.0, MyBenchmark())
    Best = Algorithm.run()

    logger.info(Best)