# Import all necessary libraries. import sys import glob import matplotlib.image as mpimg import cv2 import copy # NomeroffNet path NOMEROFF_NET_DIR = os.path.abspath('../../') sys.path.append(NOMEROFF_NET_DIR) from NomeroffNet.YoloV5Detector import Detector detector = Detector() detector.load() rootDir = '../images/*' imgs = [mpimg.imread(img_path) for img_path in glob.glob(rootDir)] for img in imgs: targetBoxes = detector.detect_bbox(copy.deepcopy(img)) targetBoxes = targetBoxes # draw rect and 4 points for targetBox in targetBoxes: cv2.rectangle(img, (int(targetBox[0]), int(targetBox[1])), (int(targetBox[2]), int(targetBox[3])), (0, 0, 0), -1) cv2.imshow("Display window", img) k = cv2.waitKey(0)
detector = Detector() detector.load() from NomeroffNet.TextDetectors.eu import eu from NomeroffNet.TextPostprocessing import textPostprocessing # load models textDetector = eu textDetector.load("latest") # Detect numberplate img_path = '../images/example2.jpeg' img = cv2.imread(img_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) targetBoxes = detector.detect_bbox(img) zones = [] regionNames = [] for targetBox in targetBoxes: x = int(min(targetBox[0], targetBox[2])) w = int(abs(targetBox[2] - targetBox[0])) y = int(min(targetBox[1], targetBox[3])) h = int(abs(targetBox[3] - targetBox[1])) image_part = img[y:y + h, x:x + w] zones.append(image_part) regionNames.append('eu') # find text with postprocessing by standart textArr = textDetector.predict(zones)