示例#1
0
def exp(w, twist_size):
    w_angle = w[3:twist_size]
    w_angle_transpose = np.transpose(w_angle)
    w_x = Utils.skew_symmetric(w[3], w[4], w[5])
    w_x_squared = np.matmul(w_x, w_x)

    # closed form solution for exponential map
    theta_sqred = np.matmul(w_angle_transpose, w_angle)[0][0]
    theta = math.sqrt(theta_sqred)

    A = 0
    B = 0
    C = 0

    # TODO use Taylor Expansion when theta_sqred is small
    if not theta == 0:
        A = math.sin(theta) / theta

    if not theta_sqred == 0:
        B = (1 - math.cos(theta)) / theta_sqred
        C = (1 - A) / theta_sqred

    u = np.array([w[0], w[1], w[2]]).reshape((3, 1))

    R_new = I_3 + np.multiply(A, w_x) + np.multiply(B, w_x_squared)
    V = I_3 + np.multiply(B, w_x) + np.multiply(C, w_x_squared)

    t_new = np.matmul(V, u)

    return R_new, t_new
示例#2
0
def ln(R, t, twist_size):
    w = np.zeros((twist_size, 1), dtype=matrix_data_type)

    trace = np.trace(R)
    theta = math.acos((trace - 1.0) / 2.0)
    theta_sqred = math.pow(theta, 2.0)

    R_transpose = np.transpose(R)
    ln_R = I_3

    # TODO use Taylor Expansion when theta is small
    if not theta == 0:
        ln_R = (theta / (2 * math.sin(theta))) * (R - R_transpose)

    w[3] = ln_R[2, 1]
    w[4] = ln_R[0, 2]
    w[5] = ln_R[1, 0]

    w_x = Utils.skew_symmetric(w[3], w[4], w[5])
    w_x_squared = np.matmul(w_x, w_x)

    A = 0
    B = 0
    coeff = 0

    # TODO use Taylor Expansion when theta_sqred is small
    if not theta == 0:
        A = math.sin(theta) / theta

    if not theta_sqred == 0:
        B = (1 - math.cos(theta)) / theta_sqred

    if not (theta == 0 or theta_sqred == 0):
        coeff = (1.0 / (theta_sqred)) * (1.0 - (A / (2.0 * B)))

    V_inv = I_3 + np.multiply(0.5, w_x) + np.multiply(coeff, w_x_squared)

    u = np.matmul(V_inv, t)

    w[0] = u[0]
    w[1] = u[1]
    w[2] = u[2]

    return w
示例#3
0
def solve_SE3(X, Y, max_its, eps):
    # init
    # array for twist values x, y, z, roll, pitch, yaw
    t_est = np.array([0, 0, 0], dtype=matrix_data_type).reshape((3, 1))
    R_est = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=matrix_data_type)
    I_3 = np.identity(3, dtype=matrix_data_type)
    (position_vector_size, N) = X.shape
    twist_size = 6
    stacked_obs_size = position_vector_size * N
    homogeneous_se3_padding = Utils.homogenous_for_SE3()
    L_mean = -1
    it = -1
    # Step Factor
    alpha = 0.125

    SE_3_est = np.append(np.append(R_est, t_est, axis=1),
                         Utils.homogenous_for_SE3(),
                         axis=0)

    generator_x = Lie.generator_x()
    generator_y = Lie.generator_y()
    generator_z = Lie.generator_z()
    generator_roll = Lie.generator_roll()
    generator_pitch = Lie.generator_pitch()
    generator_yaw = Lie.generator_yaw()

    for it in range(0, max_its, 1):
        # accumulators
        J_v = np.zeros((twist_size, 1))
        normal_matrix = np.zeros((twist_size, twist_size))

        Y_est = np.matmul(SE_3_est, X)
        v = Y_est - Y

        L = np.sum(np.square(v), axis=0)
        L_mean = np.mean(L)

        if L_mean < eps:
            print('done')
            break

        Js = JacobianGenerator.get_jacobians_lie(generator_x,
                                                 generator_y,
                                                 generator_z,
                                                 generator_yaw,
                                                 generator_pitch,
                                                 generator_roll,
                                                 Y_est,
                                                 N,
                                                 stacked_obs_size,
                                                 coefficient=2.0)

        for i in range(0, N, 1):
            J = Js[i]
            J_t = np.transpose(J)
            error_vector = np.reshape(v[:, i], (position_vector_size, 1))
            J_v += np.matmul(-J_t, error_vector)
            normal_matrix += np.matmul(J_t, J)

        ##########################################################

        # TODO: Investigate faster inversion with QR
        try:
            pseudo_inv = linalg.inv(normal_matrix)
            # (Q,R) = linalg.qr(normal_matrix_2)
        except:
            print('Cant invert')
            return SE_3_est
        w = np.matmul(pseudo_inv, J_v)
        # Apply Step Factor
        w = alpha * w

        w_transpose = np.transpose(w)
        w_x = Utils.skew_symmetric(w[3], w[4], w[5])
        w_x_squared = np.matmul(w_x, w_x)

        # closed form solution for exponential map
        theta = math.sqrt(np.matmul(w_transpose, w))
        theta_sqred = math.pow(theta, 2)
        # TODO use Taylor Expansion when theta_sqred is small
        try:
            A = math.sin(theta) / theta
            B = (1 - math.cos(theta)) / theta_sqred
            C = (1 - A) / theta_sqred
        except:
            print('bad theta')
            return SE_3_est

        u = np.array([w[0], w[1], w[2]]).reshape((3, 1))

        R_new = I_3 + np.multiply(A, w_x) + np.multiply(B, w_x_squared)
        V = I_3 + np.multiply(B, w_x) + np.multiply(C, w_x_squared)

        t_est += +np.matmul(V, u)
        R_est = np.matmul(R_new, R_est)

        SE_3_est = np.append(np.append(R_est, t_est, axis=1),
                             homogeneous_se3_padding,
                             axis=0)
        print('Runtime mean error:', L_mean)

    print('mean error:', L_mean, 'iteration: ', it)
    return SE_3_est
示例#4
0
def solve_photometric(frame_reference,
                      frame_target,
                      max_its,
                      eps,
                      alpha_step,
                      use_ndc=False,
                      debug=False):
    # init
    # array for twist values x, y, z, roll, pitch, yaw
    t_est = np.array([0, 0, 0], dtype=matrix_data_type).reshape((3, 1))
    #R_est = np.array([[0.0, -1.0, 0],
    #                  [1.0, 0.0, 0],
    #                  [0, 0, 1]], dtype=matrix_data_type)
    R_est = np.identity(3, dtype=matrix_data_type)
    I_3 = np.identity(3, dtype=matrix_data_type)

    (height, width) = frame_target.pixel_image.shape
    N = height * width
    position_vector_size = 3
    twist_size = 6
    stacked_obs_size = position_vector_size * N
    homogeneous_se3_padding = Utils.homogenous_for_SE3()
    # Step Factor
    #alpha = 0.125
    Gradient_step_manager = GradientStepManager.GradientStepManager(
        alpha_start=alpha_step,
        alpha_min=-0.7,
        alpha_step=-0.01,
        alpha_change_rate=0,
        gradient_monitoring_window_start=3,
        gradient_monitoring_window_size=0)
    v_mean = -10000
    v_mean_abs = -10000
    it = -1
    std = math.sqrt(0.4)
    image_range_offset = 10
    #depth_factor = 1.0
    #depth_factor = 1000 # 0.001 # ZR300

    SE_3_est = np.append(np.append(R_est, t_est, axis=1),
                         Utils.homogenous_for_SE3(),
                         axis=0)
    SE_3_est_orig = np.append(np.append(R_est, t_est, axis=1),
                              Utils.homogenous_for_SE3(),
                              axis=0)
    SE_3_est_last_valid = np.append(np.append(R_est, t_est, axis=1),
                                    Utils.homogenous_for_SE3(),
                                    axis=0)

    generator_x = Lie.generator_x_3_4()
    generator_y = Lie.generator_y_3_4()
    generator_z = Lie.generator_z_3_4()
    generator_roll = Lie.generator_roll_3_4()
    generator_pitch = Lie.generator_pitch_3_4()
    generator_yaw = Lie.generator_yaw_3_4()

    X_back_projection = np.ones((4, N), Utils.matrix_data_type)
    X_back_projection_last_valid = np.ones((4, N), Utils.matrix_data_type)
    valid_measurements_reference = np.full(N, False)
    valid_measurements_last = np.full(N, False)
    valid_measurements_target = np.full(N, False)
    valid_measurements = valid_measurements_reference

    # Precompute back projection of pixels
    GaussNewtonRoutines.back_project_image(width, height, image_range_offset,
                                           frame_reference.camera,
                                           frame_reference.pixel_depth,
                                           X_back_projection,
                                           valid_measurements, use_ndc)

    if debug:
        Plot3D.save_projection_of_back_projected(height, width,
                                                 frame_reference,
                                                 X_back_projection)

    # Precompute the Jacobian of SE3 around the identity
    J_lie = JacobianGenerator.get_jacobians_lie(generator_x,
                                                generator_y,
                                                generator_z,
                                                generator_yaw,
                                                generator_pitch,
                                                generator_roll,
                                                X_back_projection,
                                                N,
                                                stacked_obs_size,
                                                coefficient=2.0)

    # Precompute the Jacobian of the projection function
    J_pi = JacobianGenerator.get_jacobian_camera_model(
        frame_reference.camera.intrinsic, X_back_projection)

    # count the number of true
    #valid_measurements_total = np.logical_and(valid_measurements_reference,valid_measurements_target)

    #number_of_valid_reference = np.sum(valid_measurements_reference)
    #number_of_valid_total = np.sum(valid_measurements_total)
    #number_of_valid_measurements = number_of_valid_reference

    for it in range(0, max_its, 1):
        start = time.time()
        # accumulators
        #TODO: investigate preallocate and clear in a for loop
        J_v = np.zeros((twist_size, 1))
        normal_matrix = np.zeros((twist_size, twist_size))

        # Warp with the current SE3 estimate
        Y_est = np.matmul(SE_3_est, X_back_projection)
        v = np.zeros((N, 1), dtype=matrix_data_type, order='F')

        target_index_projections = frame_target.camera.apply_perspective_pipeline(
            Y_est)

        v_sum = GaussNewtonRoutines.compute_residual(
            width, height, target_index_projections, valid_measurements,
            frame_target.pixel_image, frame_reference.pixel_image, v,
            image_range_offset)

        number_of_valid_measurements = np.sum(valid_measurements_reference)

        Gradient_step_manager.save_previous_mean_error(v_mean_abs, it)

        v_mean = v_sum / number_of_valid_measurements
        valid_pixel_ratio = number_of_valid_measurements / N
        #v_mean_abs = np.abs(v_mean)
        #v_mean_abs = v_mean

        # TODO put this in gradient step manager
        #if valid_pixel_ratio< 0.8:
        #    print('Too many pixels are marked invalid')
        #    Gradient_step_manager.current_alpha+=0.1
        #    SE_3_est = SE_3_est_last_valid
        #    valid_measurements = valid_measurements_last
        #else:
        #    SE_3_est_last_valid = SE_3_est
        #    valid_measurements_last = valid_measurements

        Gradient_step_manager.track_gradient(v_mean_abs, it)

        if v_mean < eps:
            print('done, mean error:', v_mean)
            break

        Gradient_step_manager.analyze_gradient_history(it)
        #Gradient_step_manager.analyze_gradient_history_instantly(v_mean_abs)

        # See Kerl et al. ensures error decreases ( For pyramid levels )
        #if(v_mean > Gradient_step_manager.last_error_mean_abs):
        #continue

        GaussNewtonRoutines.gauss_newton_step(width, height,
                                              valid_measurements, J_pi, J_lie,
                                              frame_target.grad_x,
                                              frame_target.grad_y, v, J_v,
                                              normal_matrix,
                                              image_range_offset)

        # TODO: Investigate faster inversion with QR
        try:
            pseudo_inv = linalg.inv(normal_matrix)
            #(Q,R) = linalg.qr(normal_matrix)
            #Q_t = np.transpose(Q)
            #R_inv = linalg.inv(R)
            #pseudo_inv = np.multiply(R_inv,Q_t)
        except:
            print('Cant invert')
            return SE_3_est

        w = np.matmul(pseudo_inv, J_v)
        # Apply Step Factor
        w = Gradient_step_manager.current_alpha * w

        w_transpose = np.transpose(w)
        w_x = Utils.skew_symmetric(w[3], w[4], w[5])
        w_x_squared = np.matmul(w_x, w_x)

        # closed form solution for exponential map
        theta = math.sqrt(np.matmul(w_transpose, w))
        theta_sqred = math.pow(theta, 2)
        # TODO use Taylor Expansion when theta_sqred is small
        try:
            A = math.sin(theta) / theta
            B = (1 - math.cos(theta)) / theta_sqred
            C = (1 - A) / theta_sqred
        except:
            print('bad theta')
            return SE_3_est

        u = np.array([w[0], w[1], w[2]]).reshape((3, 1))

        R_new = I_3 + np.multiply(A, w_x) + np.multiply(B, w_x_squared)
        V = I_3 + np.multiply(B, w_x) + np.multiply(C, w_x_squared)

        t_est += +np.matmul(V, u)
        R_est = np.matmul(R_new, R_est)

        SE_3_est = np.append(np.append(R_est, t_est, axis=1),
                             homogeneous_se3_padding,
                             axis=0)
        end = time.time()
        print('mean error:', v_mean, 'iteration: ', it, 'valid pixel ratio: ',
              valid_pixel_ratio, 'runtime: ', end - start)

    return SE_3_est
示例#5
0
def adjoint_se3(R, t):
    t_x = Utils.skew_symmetric(t[0], t[1], t[2])
    top = np.append(R, np.matmul(t_x, R), axis=1)
    bottom = np.append(np.identity(3), R, axis=1)
    return np.append(top, bottom, axis=0)