net_params=net_params,
                                 binarize=0.000)
    paddle_model.set_parameters(params)
    # ball_model_net_params_path = 'ObjectRecognition/net_params/attn_base.json'
    ball_model_net_params_path = 'ObjectRecognition/net_params/attn_softmax.json'
    net_params = json.loads(open(ball_model_net_params_path).read())
    params = load_param('results/cmaes_soln/focus_self/ball.pth')
    # params = load_param('ObjectRecognition/models/atari/42531_2_smooth_3_2.pth')
    ball_model = ModelFocusCNN(image_shape=(84, 84),
                               net_params=net_params,
                               binarize=0.0)
    ball_model.set_parameters(params)
    model = ModelCollectionDAG()
    model.add_model('Paddle',
                    paddle_model, [],
                    augment_fn=util.RemoveMeanMemory(nb_size=(8, 8)))
    f1 = util.LowIntensityFiltering(6.0)
    f2 = util.JumpFiltering(3, 0.05)

    def f(x, y):
        return f2(x, f1(x, y))
        # model.add_model('train', r_model, ['premise'], augment_pt=f)

    model.add_model('Ball', ball_model, ['Paddle'],
                    augment_pt=f)  #,augment_pt=util.JumpFiltering(2, 0.05))
    ####
    if args.true_environment:
        model = None
    print(args.true_environment, args.env)
    if args.env == 'SelfPusher':
        if args.true_environment:
示例#2
0
    params = load_param('ObjectRecognition/models/paddle_bin_long_smooth_2.pth')
    paddle_model = ModelFocusCNN(
        image_shape=(84, 84),
        net_params=net_params,
    )
    paddle_model.set_parameters(params)
    ball_model_net_params_path = 'ObjectRecognition/net_params/two_layer.json'
    net_params = json.loads(open(ball_model_net_params_path).read())
    params = load_param('ObjectRecognition/models/ball.npy')
    ball_model = ModelFocusCNN(
        image_shape=(84, 84),
        net_params=net_params,
    )
    ball_model.set_parameters(params)
    model = ModelCollectionDAG()
    model.add_model('Paddle', paddle_model, [], augment_fn=util.RemoveMeanMemory(nb_size=(3, 9)))
    model.add_model('Ball', ball_model, ['Paddle'])
    ####

    true_environment = FocusEnvironment(model)
    dataset_path = args.record_rollouts
    changepoint_path = args.changepoint_dir
    option_chain = OptionChain(true_environment, args.changepoint_dir, args.train_edge, args)
    reward_paths = glob.glob(os.path.join(option_chain.save_dir, "*rwd.pkl"))
    print(reward_paths)
    reward_paths.sort(key=lambda x: int(x.split("__")[2]))

    head, tail = get_edge(args.train_edge)

    reward_classes = [load_from_pickle(pth) for pth in reward_paths]
    # train_models = MultiOption(1, BasicModel)