def LOAD(path): with open(os.path.join(path, "counter-fitted-vectors.txt"), "r") as f: id2vec = [] word2id = {} for line in f.readlines(): tmp = line.strip().split(" ") word = tmp[0] embed = np.array([float(x) for x in tmp[1:]]) if len(embed) != 300: continue word2id[word] = len(word2id) id2vec.append(embed) id2vec = np.stack(id2vec) return WordVector(word2id, id2vec)
def LOAD(path): with open(os.path.join(path, "chinese-merge-word-embedding.txt"), "r", encoding="utf-8") as f: id2vec = [] word2id = {} # f.readline() for line in f.readlines(): tmp = line.strip().split(' ') word = tmp[0] embed = np.array([float(x) for x in tmp[1:]]) if len(embed) != 300: continue word2id[word] = len(word2id) id2vec.append(embed) id2vec = np.stack(id2vec) return WordVector(word2id, id2vec)
def LOAD(path): word2id = pickle.load(open(os.path.join(path, "word2id.pkl"), "rb")) wordvec = pickle.load(open(os.path.join(path, "wordvec.pkl"), "rb")) return WordVector(word2id, wordvec)