def get_required_params(): return dict(DataLayer.get_required_params(), **{ 'num_audio_features': int, 'input_type': ['spectrogram', 'mfcc', 'logfbank'], 'vocab_file': str, 'dataset_files': list, })
def get_required_params(): return dict(DataLayer.get_required_params(), **{ 'lm_vocab_file': str, 'shuffle': bool, 'repeat': bool, 'max_length': int, 'processed_data_folder': str, })
def get_required_params(): return dict( DataLayer.get_required_params(), **{ "dataset_files": list, "dataset_location": str, "num_audio_features": int, "audio_length": int, "num_labels": int, "model_format": str })
def get_required_params(): return dict( DataLayer.get_required_params(), **{ 'source_file': str, 'src_vocab_file': str, 'tgt_vocab_file': str, 'max_length': int, 'shuffle': bool, 'repeat': bool, })
def get_required_params(): return dict( DataLayer.get_required_params(), **{ 'data_dir': str, 'file_pattern': str, 'src_vocab_file': str, 'batch_size': int, 'max_length': int, 'shuffle': bool, "delimiter": str, })
def get_required_params(): return dict( DataLayer.get_required_params(), **{ 'dataset_location': str, 'dataset': ['LJ', 'MAILABS'], 'num_audio_features': None, 'output_type': ['magnitude', 'mel', 'both'], 'vocab_file': str, 'dataset_files': list, 'feature_normalize': bool, } )
def get_required_params(): return dict(DataLayer.get_required_params(), **{ "num_audio_features": int, "dataset_files": list })
def get_required_params(): return dict(DataLayer.get_required_params(), **{ 'repeat': bool, 'bptt': int, })
def get_required_params(): return dict(DataLayer.get_required_params(), **{ 'data_dir': str, })