示例#1
0
    def test_selected_columns_negated(self):
        filtered_data = \
            filter.IsDefined(negate=True, columns=[4])(self.table)
        correct_data = [row for row in self.data if not row[4]]

        self.assertEqual(len(filtered_data), len(correct_data))
        self.assertSequenceEqual(filtered_data, correct_data)
示例#2
0
    def test_can_inherit_is_defined_filter(self):
        filtered_data = filter.IsDefined(columns=[1])(self.table)
        filtered_data = filtered_data[:, 4]
        correct_data = [[row[4]]for row in self.data if row[1]]

        self.assertEqual(len(filtered_data), len(correct_data))
        self.assertSequenceEqual(filtered_data, correct_data)
示例#3
0
    def commit(self):
        if self.data is not None:
            states = [self.state_for_column(i)
                      for i in range(len(self.varmodel))]

            # Columns to filter unknowns by dropping rows.
            filter_columns = [i for i, state in enumerate(states)
                              if state.method.short == "drop"]

            impute_columns = [i for i, state in enumerate(states)
                              if state.method.short not in ["drop", "leave"]]

            imputers = [(self.varmodel[i], self.imputer_for_column(i))
                        for i in impute_columns]

            data = self.data

            if imputers:
                table_imputer = ImputerModel(data.domain, dict(imputers))
                data = table_imputer(data)

            if filter_columns:
                filter_ = data_filter.IsDefined(filter_columns)
                data = filter_(data)
        else:
            data = None

        self.send("Data", data)
        self.modified = False
示例#4
0
    def __call__(self, data):
        trans = self.transformers[0]
        filter_ = data_filter.IsDefined([trans.variable], negate=True)
        data_with_unknowns = filter_(data)
        values = trans(data_with_unknowns)

        domain = Orange.data.Domain([trans.variable])
        X = Orange.data.Table.from_table(domain, data)
        X.X[numpy.isnan(X), :] = values
        return X
示例#5
0
    def commit(self):
        matching_output = self.data
        non_matching_output = None
        annotated_output = None

        self.Error.clear()
        if self.data:
            domain = self.data.domain
            conditions = []
            for attr_name, oper_idx, values in self.conditions:
                if attr_name in self.AllTypes:
                    attr_index = attr = None
                    attr_type = self.AllTypes[attr_name]
                    operators = self.Operators[attr_name]
                else:
                    attr_index = domain.index(attr_name)
                    attr = domain[attr_index]
                    attr_type = vartype(attr)
                    operators = self.Operators[type(attr)]
                opertype, _ = operators[oper_idx]
                if attr_type == 0:
                    filt = data_filter.IsDefined()
                elif attr_type in (2, 4):  # continuous, time
                    try:
                        floats = self._values_to_floats(attr, values)
                    except ValueError as e:
                        self.Error.parsing_error(e.args[0])
                        return
                    if floats is None:
                        continue
                    filt = data_filter.FilterContinuous(
                        attr_index, opertype, *floats)
                elif attr_type == 3:  # string
                    filt = data_filter.FilterString(attr_index, opertype,
                                                    *[str(v) for v in values])
                else:
                    if opertype == FilterDiscreteType.IsDefined:
                        f_values = None
                    else:
                        if not values or not values[0]:
                            continue
                        values = [attr.values[i - 1] for i in values]
                        if opertype == FilterDiscreteType.Equal:
                            f_values = {values[0]}
                        elif opertype == FilterDiscreteType.NotEqual:
                            f_values = set(attr.values)
                            f_values.remove(values[0])
                        elif opertype == FilterDiscreteType.In:
                            f_values = set(values)
                        else:
                            raise ValueError("invalid operand")
                    filt = data_filter.FilterDiscrete(attr_index, f_values)
                conditions.append(filt)

            if conditions:
                filters = data_filter.Values(conditions)
                matching_output = filters(self.data)
                filters.negate = True
                non_matching_output = filters(self.data)

                row_sel = np.in1d(self.data.ids, matching_output.ids)
                annotated_output = create_annotated_table(self.data, row_sel)

            # if hasattr(self.data, "name"):
            #     matching_output.name = self.data.name
            #     non_matching_output.name = self.data.name

            purge_attrs = self.purge_attributes
            purge_classes = self.purge_classes
            if (purge_attrs or purge_classes) and \
                    not isinstance(self.data, SqlTable):
                attr_flags = sum([
                    Remove.RemoveConstant * purge_attrs,
                    Remove.RemoveUnusedValues * purge_attrs
                ])
                class_flags = sum([
                    Remove.RemoveConstant * purge_classes,
                    Remove.RemoveUnusedValues * purge_classes
                ])
                # same settings used for attributes and meta features
                remover = Remove(attr_flags, class_flags, attr_flags)

                matching_output = remover(matching_output)
                non_matching_output = remover(non_matching_output)
                annotated_output = remover(annotated_output)

        if not matching_output:
            matching_output = None
        if not non_matching_output:
            non_matching_output = None
        if not annotated_output:
            annotated_output = None

        self.Outputs.matching_data.send(matching_output)
        self.Outputs.unmatched_data.send(non_matching_output)
        self.Outputs.annotated_data.send(annotated_output)

        self.match_desc = report.describe_data_brief(matching_output)
        self.nonmatch_desc = report.describe_data_brief(non_matching_output)

        summary = matching_output.approx_len() if matching_output else \
            self.info.NoOutput
        details = format_summary_details(
            matching_output) if matching_output else ""
        self.info.set_output_summary(summary, details)
示例#6
0
    def test_all_columns_negated(self):
        filtered_data = filter.IsDefined(negate=True)(self.table)
        correct_data = [row for row in self.data if not all(row)]

        self.assertEqual(len(filtered_data), len(correct_data))
        self.assertSequenceEqual(filtered_data, correct_data)
示例#7
0
    def test_selected_columns(self):
        filtered_data = filter.IsDefined(columns=[0])(self.table)
        correct_data = [row for row in self.data if row[0]]

        self.assertEqual(len(filtered_data), len(correct_data))
        self.assertSequenceEqual(filtered_data, correct_data)
示例#8
0
    def test_on_all_columns(self):
        filtered_data = filter.IsDefined()(self.table)
        correct_data = [row for row in self.data if all(row)]

        self.assertEqual(len(filtered_data), len(correct_data))
        self.assertSequenceEqual(filtered_data, correct_data)