示例#1
1
 def test_sparse_data(self):
     data = Table("iris")
     data.X = sparse.csr_matrix(data.X)
     self.assertTrue(sparse.issparse(data.X))
     self.widget.manifold_method_index = 2
     self.send_signal(self.widget.Inputs.data, data)
     self.widget.apply_button.button.click()
     self.assertTrue(self.widget.Error.sparse_methods.is_shown())
     self.send_signal(self.widget.Inputs.data, None)
     self.widget.apply_button.button.click()
     self.assertFalse(self.widget.Error.sparse_methods.is_shown())
     # GH 2158
     self.widget.manifold_method_index = 0
     self.assertEqual(
         'TSNE', self.widget.MANIFOLD_METHODS[
             self.widget.manifold_method_index].__name__)
     self.send_signal(self.widget.Inputs.data, data)
     self.widget.apply_button.button.click()
     self.assertFalse(self.widget.Error.sparse_methods.is_shown())
     self.assertFalse(self.widget.Error.sparse_tsne_distance.is_shown())
     self.assertIsInstance(
         self.get_output(self.widget.Outputs.transformed_data), Table)
     self.widget.params_widget.parameters['metric'] = 'chebyshev'
     self.widget.apply_button.button.click()
     self.assertTrue(self.widget.Error.sparse_tsne_distance.is_shown())
示例#2
1
    def __call__(self, data):
        """
        Apply randomization of the given data. Returns a new
        data table.

        Parameters
        ----------
        data : Orange.data.Table
            A data table to be randomized.

        Returns
        -------
        data : Orange.data.Table
            Randomized data table.
        """
        new_data = Table(data)
        new_data.ensure_copy()

        if self.rand_type & Randomize.RandomizeClasses:
            new_data.Y = self.randomize(new_data.Y)
        if self.rand_type & Randomize.RandomizeAttributes:
            new_data.X = self.randomize(new_data.X)
        if self.rand_type & Randomize.RandomizeMetas:
            new_data.metas = self.randomize(new_data.metas)
        return new_data
示例#3
1
 def test_sparse(self):
     table = Table("iris")
     table.X = sp.csr_matrix(table.X)
     self.assertTrue(sp.issparse(table.X))
     self.assertFalse(self.widget.Warning.sparse_not_supported.is_shown())
     self.send_signal(self.widget.Inputs.data, table)
     self.assertTrue(self.widget.Warning.sparse_not_supported.is_shown())
示例#4
1
文件: base.py 项目: lanzagar/orange3
 def test_sparse_data(self, timeout=DEFAULT_TIMEOUT):
     """Test widget for sparse data"""
     table = Table("iris")
     table.X = sp.csr_matrix(table.X)
     self.assertTrue(sp.issparse(table.X))
     self.send_signal(self.widget.Inputs.data, table)
     if self.widget.isBlocking():
         spy = QSignalSpy(self.widget.blockingStateChanged)
         self.assertTrue(spy.wait(timeout))
     self.send_signal(self.widget.Inputs.data_subset, table[::30])
     self.assertEqual(len(self.widget.subset_indices), 5)
示例#5
1
文件: base.py 项目: sckevmit/orange3
 def test_sparse_data(self, timeout=DEFAULT_TIMEOUT):
     table = Table("iris")
     with table.unlocked():
         table.X = sp.csr_matrix(table.X)
     self.assertTrue(sp.issparse(table.X))
     self.send_signal(self.widget.Inputs.data, table)
     self.assertTrue(self.widget.Error.sparse_data.is_shown())
     self.send_signal(self.widget.Inputs.data_subset, table[::30])
     self.assertEqual(len(self.widget.subset_data), 5)
     self.send_signal(self.widget.Inputs.data, None)
     self.assertFalse(self.widget.Error.sparse_data.is_shown())
示例#6
1
    def test_sparse_data(self):
        data = Table("iris")
        data.X = sp.csr_matrix(data.X)
        self.widget.set_data(data)
        decomposition = DECOMPOSITIONS[self.widget.decomposition_idx]
        self.assertTrue(decomposition.supports_sparse)
        self.assertFalse(self.widget.normalize_box.isEnabled())

        buttons = self.widget.decomposition_box.group.box.buttons
        for i, decomposition in enumerate(DECOMPOSITIONS):
            if not decomposition.supports_sparse:
                self.assertFalse(buttons[i].isEnabled())

        data = Table("iris")
        self.widget.set_data(data)
        self.assertTrue(all([b.isEnabled() for b in buttons]))
        self.assertTrue(self.widget.normalize_box.isEnabled())
示例#7
1
    def test_save_uncompressed(self):
        widget = self.widget
        widget.auto_save = False

        spiris = Table("iris")
        spiris.X = sp.csr_matrix(spiris.X)

        for selected_filter, writer in widget.filters.items():
            widget.write = writer
            ext = writer.EXTENSIONS[0]
            with named_file("", suffix=ext) as filename:
                widget.get_save_filename = Mock(
                    return_value=(filename, selected_filter))

                self.send_signal(widget.Inputs.data, self.iris)
                widget.save_file_as()
                self.assertEqual(len(Table(filename)), 150)

                if writer.SUPPORT_SPARSE_DATA:
                    self.send_signal(widget.Inputs.data, spiris)
                    widget.save_file()
                    self.assertEqual(len(Table(filename)), 150)
示例#8
0
    def test_prepare_freeviz_data(self):
        table = Table("iris")
        FreeViz.prepare_freeviz_data(table)

        table.X = table.X * np.nan
        self.assertEqual(FreeViz.prepare_freeviz_data(table), (None, None, None))

        table.X = None
        FreeViz.prepare_freeviz_data(table)
    def test_prepare_freeviz_data(self):
        table = Table("iris")
        FreeViz.prepare_freeviz_data(table)

        table.X = table.X * np.nan
        self.assertEqual(FreeViz.prepare_freeviz_data(table),
                         (None, None, None))

        table.X = None
        FreeViz.prepare_freeviz_data(table)
 def test_sparse(self):
     table = Table("iris")
     table.X = sp.csr_matrix(table.X)
     self.assertTrue(sp.issparse(table.X))
     self.assertFalse(self.widget.Warning.sparse_not_supported.is_shown())
     self.send_signal(self.widget.Inputs.data, table)
     self.assertTrue(self.widget.Warning.sparse_not_supported.is_shown())
示例#11
0
    def test_column_filtering_sparse(self):
        data = Table("iris")
        with data.unlocked():
            data.X = csr_matrix(data.X)

        new_data = RemoveNaNColumns()(data)
        self.assertEqual(data, new_data)
示例#12
0
 def test_sparse(self):
     table = Table("iris")
     table.X = sp.csr_matrix(table.X)
     self.assertTrue(sp.issparse(table.X))
     self.assertFalse(self.widget.Error.sparse_data.is_shown())
     self.send_signal(self.widget.Inputs.data, table)
     self.assertTrue(self.widget.Error.sparse_data.is_shown())
示例#13
0
    def test_save_uncompressed(self):
        widget = self.widget
        widget.auto_save = False

        spiris = Table("iris")
        with spiris.unlocked():
            spiris.X = sp.csr_matrix(spiris.X)

        for selected_filter, writer in widget.get_filters().items():
            widget.write = writer
            ext = writer.EXTENSIONS[0]
            with named_file("", suffix=ext) as filename:
                widget.get_save_filename = Mock(return_value=(filename,
                                                              selected_filter))

                self.send_signal(widget.Inputs.data, self.iris)
                widget.save_file_as()
                if hasattr(writer, "read"):
                    self.assertEqual(len(writer(filename).read()), 150)

                if writer.SUPPORT_SPARSE_DATA:
                    self.send_signal(widget.Inputs.data, spiris)
                    widget.save_file()
                    if hasattr(writer, "read"):
                        self.assertEqual(len(writer(filename).read()), 150)
示例#14
0
 def test_sparse_warning(self):
     """Check if the user is warned about sparse input"""
     data = Table("iris")
     self.send_signal("Data", data)
     self.assertFalse(self.widget.Warning.sparse_data.is_shown())
     data.X = csr_matrix(data.X)
     self.send_signal("Data", data)
     self.assertTrue(self.widget.Warning.sparse_data.is_shown())
示例#15
0
文件: base.py 项目: acopar/orange3
 def test_sparse_data(self):
     table = Table("iris")
     table.X = sp.csr_matrix(table.X)
     self.assertTrue(sp.issparse(table.X))
     self.send_signal(self.widget.Inputs.data, table)
     self.assertTrue(self.widget.Error.sparse_data.is_shown())
     self.send_signal(self.widget.Inputs.data_subset, table[::30])
     self.assertEqual(len(self.widget.subset_data), 5)
     self.send_signal(self.widget.Inputs.data, None)
     self.assertFalse(self.widget.Error.sparse_data.is_shown())
示例#16
0
文件: base.py 项目: newinker/orange3
 def test_sparse_data(self):
     table = Table("iris")
     table.X = sp.csr_matrix(table.X)
     self.assertTrue(sp.issparse(table.X))
     self.send_signal(self.widget.Inputs.data, table)
     self.assertTrue(self.widget.Error.sparse_data.is_shown())
     self.send_signal(self.widget.Inputs.data_subset, table[::30])
     self.assertEqual(len(self.widget.subset_data), 5)
     self.send_signal(self.widget.Inputs.data, None)
     self.assertFalse(self.widget.Error.sparse_data.is_shown())
 def test_sparse_data(self):
     data = Table("iris")
     data.X = sparse.csr_matrix(data.X)
     self.assertTrue(sparse.issparse(data.X))
     self.send_signal("Data", data)
     self.widget.apply_button.button.click()
     self.assertTrue(self.widget.Error.sparse_not_supported.is_shown())
     self.send_signal("Data", None)
     self.widget.apply_button.button.click()
     self.assertFalse(self.widget.Error.sparse_not_supported.is_shown())
示例#18
0
 def test_sparse_subset_data(self):
     """
     Scatter Plot can handle sparse subset data.
     GH-2773
     """
     data = Table("iris")
     w = self.widget
     data.X = sp.csr_matrix(data.X)
     self.send_signal(w.Inputs.data, data)
     self.send_signal(w.Inputs.data_subset, data[::30])
     self.assertEqual(len(w.graph.subset_indices), 5)
示例#19
0
 def test_mixed_features(self):
     data = Table('auto-mpg')
     data.X = Imputer().fit_transform(data.X)
     s = SelectBestFeatures(method=UnivariateLinearRegression(), k=2)
     data2 = s(data)
     self.assertEqual(sum(1 for f in data2.domain.attributes
                          if isinstance(f, ContinuousVariable)), 2)
     self.assertEqual(sum(1 for f in data2.domain.attributes
                          if isinstance(f, DiscreteVariable)),
                      sum(1 for f in data.domain.attributes
                          if isinstance(f, DiscreteVariable)))
示例#20
0
 def test_sparse_data(self):
     """
     Show warning msg when data is sparse.
     GH-2298
     GH-2163
     """
     data = Table("iris")[::25]
     data.X = sp.csr_matrix(data.X)
     self.send_signal(self.widget.Inputs.data, data)
     self.assertTrue(self.widget.Warning.sparse_not_supported.is_shown())
     self.send_signal(self.widget.Inputs.data, None)
     self.assertFalse(self.widget.Warning.sparse_not_supported.is_shown())
示例#21
0
 def test_sparse_data(self):
     """
     Show warning msg when data is sparse.
     GH-2298
     GH-2163
     """
     data = Table("iris")[::25]
     data.X = sp.csr_matrix(data.X)
     self.send_signal(self.widget.Inputs.data, data)
     self.assertTrue(self.widget.Warning.sparse_not_supported.is_shown())
     self.send_signal(self.widget.Inputs.data, None)
     self.assertFalse(self.widget.Warning.sparse_not_supported.is_shown())
示例#22
0
 def test_mixed_features(self):
     data = Table('auto-mpg')
     data.X = Imputer().fit_transform(data.X)
     s = SelectBestFeatures(method=UnivariateLinearRegression(), k=2)
     data2 = s(data)
     self.assertEqual(
         sum(1 for f in data2.domain.attributes
             if isinstance(f, ContinuousVariable)), 2)
     self.assertEqual(
         sum(1 for f in data2.domain.attributes
             if isinstance(f, DiscreteVariable)),
         sum(1 for f in data.domain.attributes
             if isinstance(f, DiscreteVariable)))
示例#23
0
    def test_empty_groups(self):
        """Test if groups with zero elements are not shown"""
        table = Table(test_filename("datasets/cyber-security-breaches.tab"))
        self.send_signal(self.widget.Inputs.data, table)
        self.__select_variable("US State")
        self.__select_group("US State")
        self.assertEqual(52, len(self.widget.boxes))

        # select rows with US State equal to TX or MO
        use_indexes = np.array([0, 1, 25, 26, 27])
        table.X = table.X[use_indexes]
        self.send_signal(self.widget.Inputs.data, table)
        self.assertEqual(2, len(self.widget.boxes))
示例#24
0
    def test_empty_groups(self):
        """Test if groups with zero elements are not shown"""
        table = Table("cyber-security-breaches")
        self.send_signal(self.widget.Inputs.data, table)
        self.__select_variable("US State")
        self.__select_group("US State")
        self.assertEqual(52, len(self.widget.boxes))

        # select rows with US State equal to TX or MO
        use_indexes = np.array([0, 1, 25, 26, 27])
        table.X = table.X[use_indexes]
        self.send_signal(self.widget.Inputs.data, table)
        self.assertEqual(2, len(self.widget.boxes))
示例#25
0
 def test_sparse_data_regression(self):
     """
     Regression Tree can handle sparse data.
     GH-2497
     """
     table1 = Table("housing")
     self.send_signal("Data", table1)
     model_dense = self.get_output("Model")
     table2 = Table("housing")
     table2.X = sp.csr_matrix(table2.X)
     self.send_signal("Data", table2)
     model_sparse = self.get_output("Model")
     self.assertTrue(np.array_equal(model_dense._code, model_sparse._code))
     self.assertTrue(np.array_equal(model_dense._values, model_sparse._values))
示例#26
0
    def test_domain_edit_on_sparse_data(self):
        iris = Table("iris")
        iris.X = sp.csr_matrix(iris.X)

        f = tempfile.NamedTemporaryFile(suffix='.pickle', delete=False)
        pickle.dump(iris, f)
        f.close()

        self.widget.add_path(f.name)
        self.widget.load_data()

        output = self.get_output(self.widget.Outputs.data)
        self.assertIsInstance(output, Table)
        self.assertEqual(iris.X.shape, output.X.shape)
        self.assertTrue(sp.issparse(output.X))
示例#27
0
    def test_domain_edit_on_sparse_data(self):
        iris = Table("iris")
        iris.X = sp.csr_matrix(iris.X)

        f = tempfile.NamedTemporaryFile(suffix='.pickle', delete=False)
        pickle.dump(iris, f)
        f.close()

        self.widget.add_path(f.name)
        self.widget.load_data()

        output = self.get_output(self.widget.Outputs.data)
        self.assertIsInstance(output, Table)
        self.assertEqual(iris.X.shape, output.X.shape)
        self.assertTrue(sp.issparse(output.X))
示例#28
0
 def test_sparse(self):
     """
     Test sparse data.
     GH-2152
     GH-2157
     """
     table = Table("iris")
     table.X = sp.csr_matrix(table.X)
     self.assertTrue(sp.issparse(table.X))
     table.Y = sp.csr_matrix(table._Y)  # pylint: disable=protected-access
     self.assertTrue(sp.issparse(table.Y))
     self.send_signal("Data", table)
     self.widget.set_subset_data(table[:30])
     data = self.get_output("Data")
     self.assertTrue(data.is_sparse())
     self.assertEqual(len(data.domain), 5)
示例#29
0
    def test_sparse_data(self):
        """
        Sparse support.
        GH-2160
        GH-2260
        """
        table = Table("iris")
        self.send_signal(self.widget.Inputs.data, table)
        self.assertEqual(len(self.widget.discrete_data.domain), len(table.domain))
        output = self.get_output("Data")
        self.assertFalse(output.is_sparse())

        table.X = sp.csr_matrix(table.X)
        self.send_signal(self.widget.Inputs.data, table)
        self.assertEqual(len(self.widget.discrete_data.domain), 2)
        output = self.get_output("Data")
        self.assertTrue(output.is_sparse())
示例#30
0
    def test_sparse_data(self):
        data = Table("iris")
        data.X = sp.csr_matrix(data.X)
        self.widget.set_data(data)
        decomposition = DECOMPOSITIONS[self.widget.decomposition_idx]
        self.assertTrue(decomposition.supports_sparse)
        self.assertFalse(self.widget.normalize_box.isEnabled())

        buttons = self.widget.decomposition_box.group.box.buttons
        for i, decomposition in enumerate(DECOMPOSITIONS):
            if not decomposition.supports_sparse:
                self.assertFalse(buttons[i].isEnabled())

        data = Table("iris")
        self.widget.set_data(data)
        self.assertTrue(all([b.isEnabled() for b in buttons]))
        self.assertTrue(self.widget.normalize_box.isEnabled())
    def test_sparse_data(self):
        """
        Sparse support.
        GH-2160
        GH-2260
        """
        table = Table("iris")
        self.send_signal(self.widget.Inputs.data, table)
        self.assertEqual(len(self.widget.discrete_data.domain),
                         len(table.domain))
        output = self.get_output("Data")
        self.assertFalse(output.is_sparse())

        table.X = sp.csr_matrix(table.X)
        self.send_signal(self.widget.Inputs.data, table)
        self.assertEqual(len(self.widget.discrete_data.domain), 2)
        output = self.get_output("Data")
        self.assertTrue(output.is_sparse())
示例#32
0
 def test_sparse_data(self):
     data = Table("iris")
     data.X = sparse.csr_matrix(data.X)
     self.assertTrue(sparse.issparse(data.X))
     self.widget.manifold_method_index = 2
     self.send_signal(self.widget.Inputs.data, data)
     self.widget.apply_button.button.click()
     self.assertTrue(self.widget.Error.sparse_methods.is_shown())
     self.send_signal(self.widget.Inputs.data, None)
     self.widget.apply_button.button.click()
     self.assertFalse(self.widget.Error.sparse_methods.is_shown())
     # GH 2158
     self.widget.manifold_method_index = 0
     self.assertEqual(
         'TSNE',
         self.widget.MANIFOLD_METHODS[self.widget.manifold_method_index].__name__)
     self.send_signal(self.widget.Inputs.data, data)
     self.widget.apply_button.button.click()
     self.assertFalse(self.widget.Error.sparse_methods.is_shown())
     self.assertFalse(self.widget.Error.sparse_tsne_distance.is_shown())
     self.assertIsInstance(self.get_output(self.widget.Outputs.transformed_data), Table)
     self.widget.params_widget.parameters['metric'] = 'chebyshev'
     self.widget.apply_button.button.click()
     self.assertTrue(self.widget.Error.sparse_tsne_distance.is_shown())
    def test_sparse(self):
        """
        Merge should work with sparse.
        GH-2295
        GH-2155
        """
        data = Table("iris")[::25]
        data_ed_dense = Table("titanic")[::300]
        data_ed_sparse = Table("titanic")[::300]
        data_ed_sparse.X = sp.csr_matrix(data_ed_sparse.X)
        self.send_signal("Data", data)

        self.send_signal("Extra Data", data_ed_dense)
        output_dense = self.get_output("Data")
        self.assertFalse(sp.issparse(output_dense.X))
        self.assertFalse(output_dense.is_sparse())

        self.send_signal("Extra Data", data_ed_sparse)
        output_sparse = self.get_output("Data")
        self.assertTrue(sp.issparse(output_sparse.X))
        self.assertTrue(output_sparse.is_sparse())

        output_sparse.X = output_sparse.X.toarray()
        self.assertTablesEqual(output_dense, output_sparse)
示例#34
0
 def test_str(self):
     iris = Table('iris')
     with iris.unlocked():
         iris.X, iris.Y = csr_matrix(iris.X), csr_matrix(iris.Y)
     str(iris)
示例#35
0
 def test_str(self):
     iris = Table('iris')
     iris.X, iris.Y = csr_matrix(iris.X), csr_matrix(iris.Y)
     str(iris)
示例#36
0
 def test_str(self):
     iris = Table('iris')
     iris.X, iris.Y = csr_matrix(iris.X), csr_matrix(iris.Y)
     str(iris)
示例#37
0
 def test_error_on_sparse_data(self):
     data = Table('iris')
     data.X = sp.csr_matrix(data.X)
     self.widget.set_data(data)
     self.assertTrue(self.widget.Error.sparse_data.is_shown())
示例#38
0
    def test_column_filtering_sparse(self):
        data = Table("iris")
        data.X = csr_matrix(data.X)

        new_data = RemoveNaNColumns()(data)
        self.assertEqual(data, new_data)
示例#39
-1
    def _calculate_table_values(self):
        genes = self.data.domain.attributes[:self.GENE_MAXIMUM]
        matrix = self.aggregated_data
        clusters = self.clusters_unordered
        if self.transpose:
            matrix, clusters, genes = self._transpose(matrix, clusters, genes)

        # create data table since imputation of nan values is required
        matrix = Table(Domain(genes), matrix)
        matrix_before_norm = matrix.copy()  # for tooltip
        matrix = SklImpute()(matrix)

        if self.log_scale:
            matrix.X = np.log(matrix.X + 1)
        if self.normalize:
            matrix.X = self._normalize(matrix.X)

        # values must be in range [0, 1] for visualisation
        matrix.X = self._norm_min_max(matrix.X)

        if self.biclustering:
            cluster_order, gene_order = self.cluster_data(matrix)
        else:
            cluster_order, gene_order = np.arange(matrix.X.shape[0]), np.arange(matrix.X.shape[1])

        # reorder
        self.matrix = matrix[cluster_order][:, gene_order]
        self.matrix_before_norm = matrix_before_norm[cluster_order][:, gene_order]
        self.clusters = clusters[cluster_order]

        self._refresh_table()
        self._update_selection()
        self._invalidate()
示例#40
-1
 def test_sparse_subset_data(self):
     """
     Scatter Plot can handle sparse subset data.
     GH-2773
     """
     data = Table("iris")
     w = self.widget
     data.X = sp.csr_matrix(data.X)
     self.send_signal(w.Inputs.data, data)
     self.send_signal(w.Inputs.data_subset, data[::30])
     self.assertEqual(len(w.graph.subset_indices), 5)
示例#41
-1
 def test_sparse_data(self, timeout=DEFAULT_TIMEOUT):
     """Test widget for sparse data"""
     table = Table("iris")
     table.X = sp.csr_matrix(table.X)
     self.assertTrue(sp.issparse(table.X))
     self.send_signal(self.widget.Inputs.data, table)
     if self.widget.isBlocking():
         spy = QSignalSpy(self.widget.blockingStateChanged)
         self.assertTrue(spy.wait(timeout))
     self.send_signal(self.widget.Inputs.data_subset, table[::30])
     self.assertEqual(len(self.widget.subset_indices), 5)
示例#42
-1
    def test_sparse(self):
        """
        Test sparse data.
        GH-2152
        GH-2157
        """
        table = Table("iris")
        table.X = sp.csr_matrix(table.X)
        self.assertTrue(sp.issparse(table.X))
        table.Y = sp.csr_matrix(table._Y)  # pylint: disable=protected-access
        self.assertTrue(sp.issparse(table.Y))
        self.send_signal(self.widget.Inputs.data, table)
        self.widget.set_subset_data(table[:30])
        data = self.get_output("Data")

        self.assertTrue(data.is_sparse())
        self.assertEqual(len(data.domain), 5)