def test_lasso_scorer_feature(self): data = Table('housing') learner = LassoRegressionLearner() scores = learner.score_data(data) for i, attr in enumerate(data.domain.attributes): score = learner.score_data(data, attr) self.assertEqual(score, scores[i])
def test_comparison_elastic_net(self): alphas = [0.001, 0.1, 1, 10, 100] for a in alphas: lasso = LassoRegressionLearner(alpha=a) lasso_model = lasso(self.housing) elastic = ElasticNetLearner(alpha=a, l1_ratio=1) elastic_model = elastic(self.housing) d = np.sum(lasso_model.coefficients - elastic_model.coefficients) self.assertEqual(d, 0)
def test_comparison_elastic_net(self): alphas = [0.001, 0.1, 1, 10, 100] for a in alphas: lasso = LassoRegressionLearner(alpha=a) lasso_model = lasso(self.housing) en = ElasticNetLearner(alpha=a, l1_ratio=1) en_model = en(self.housing) np.testing.assert_allclose(lasso_model.coefficients, en_model.coefficients, atol=1e-07)
def test_scorer_feature(self): learners = [LinearRegressionLearner(), RidgeRegressionLearner(), LassoRegressionLearner(alpha=0.01), ElasticNetLearner(alpha=0.01)] for learner in learners: scores = learner.score_data(self.housing) for i, attr in enumerate(self.housing.domain.attributes): score = learner.score_data(self.housing, attr) self.assertEqual(score, scores[i])
def test_scorer(self): learners = [LinearRegressionLearner(), RidgeRegressionLearner(), LassoRegressionLearner(alpha=0.01), ElasticNetLearner(alpha=0.01)] for learner in learners: scores = learner.score_data(self.housing) self.assertEqual('LSTAT', self.housing.domain.attributes[np.argmax(scores)].name) self.assertEqual(len(scores), len(self.housing.domain.attributes))
def test_Regression(self): ridge = RidgeRegressionLearner() lasso = LassoRegressionLearner() elastic = ElasticNetLearner() elasticCV = ElasticNetCVLearner() mean = MeanLearner() learners = [ridge, lasso, elastic, elasticCV, mean] res = CrossValidation(self.housing, learners, k=2) rmse = RMSE(res) for i in range(len(learners) - 1): self.assertLess(rmse[i], rmse[-1])
def test_scorer(self): data = Table('housing') learners = [ LinearRegressionLearner(), RidgeRegressionLearner(), LassoRegressionLearner(alpha=0.01), ElasticNetLearner(alpha=0.01) ] for learner in learners: scores = learner.score_data(data) self.assertEqual('NOX', data.domain.attributes[np.argmax(scores)].name) self.assertEqual(len(scores), len(data.domain.attributes))
def test_lasso_scorer(self): data = Table('housing') learner = LassoRegressionLearner() scores = learner.score_data(data) self.assertEqual(len(scores), len(data.domain.attributes))