示例#1
0
    x.setVal(v1)
    dataset4.add(varset4)

    v2 = 10 - v1
    x.setVal(v2)
    dataset5.add(varset4)

import Ostap.FitModels as Models

positive = Models.PolyPos_pdf('PP', mass4, power=3)
increasing = Models.Monothonic_pdf('PI', mass4, power=3, increasing=True)
decreasing = Models.Monothonic_pdf('PD', mass4, power=3, increasing=False)
inc_convex = Models.Convex_pdf('PIX',
                               mass4,
                               power=3,
                               increasing=True,
                               convex=True)
dec_convex = Models.Convex_pdf('PDX',
                               mass4,
                               power=3,
                               increasing=False,
                               convex=True)
convex = Models.ConvexOnly_pdf('PX', mass4, power=3, convex=True)
concave = Models.ConvexOnly_pdf('PX', mass4, power=3, convex=False)

with timing('Positive   5'), rooSilent():
    r5, f = positive.fitTo(dataset5)
with timing('Increasing 5'), rooSilent():
    i5, f = increasing.fitTo(dataset5)
with timing('Convex     5'), rooSilent():
示例#2
0
    result, f = m_d4.fitTo(dataset2)

if 0 != result.status() or 3 != result.covQual():
    logger.warning('Fit is not perfect MIGRAD=%d QUAL=%d ' %
                   (result.status(), result.covQual()))
    print result
else:
    for phi in m_d4.phis:
        print "\tPoly4:       phi= %s " % phi.ve()

models.append(m_d4)

# =============================================================================
logger.info("Test  convex Poly(4)-Distribution")
# =============================================================================
m_c4 = Models.Convex_pdf('C4', x, power=4, increasing=False, convex=True)

with rooSilent():
    result, f = m_c4.fitTo(dataset2)
    result, f = m_c4.fitTo(dataset2)

if 0 != result.status() or 3 != result.covQual():
    logger.warning('Fit is not perfect MIGRAD=%d QUAL=%d ' %
                   (result.status(), result.covQual()))
    print result
else:
    for phi in m_c4.phis:
        print "\tPoly4:       phi= %s " % phi.ve()

models.append(m_c4)