class PnccdDetector(DetectorBase): """ Class for lcls detectors. """ def __init__(self, geom, beam, run_num=0): """ Initialize a pnccd detector. :param geom: The path to the geometry .data file. :param beam: The beam object. :param run_num: The run_num containing the background, rms and gain and the other pixel pixel properties. """ super(PnccdDetector, self).__init__() # Parse the path to extract the necessary information to use psana modules parsed_path = geom.split('/') # Notify the user that the path should be as deep as the geometry profile if parsed_path[-2] != "geometry": # print parsed_path[-1] raise Exception( " Sorry, at present, the package is not very smart. Please specify " + "the path of the detector as deep as the geometry profile. \n " + "And example would be like:" + "/reg/d/psdm/amo/experiment_name/calib/group/source/geometry/0-end.data \n" + "where the '/calib/group/source/geometry/0-end.data' part is essential. \n" + "The address before that part is not essential and can be replaced with" + " your absolute address or relative address.\n" "The experiment_name is also essential in Python 3.") self.initialize(geom=geom, run_num=run_num) # Initialize the pixel effects self.initialize_pixels_with_beam(beam=beam) def initialize(self, geom, run_num=0): """ Initialize the detector as pnccd :param geom: The pnccd .data file which characterize the geometry profile. :param run_num: The run_num containing the background, rms and gain and the other pixel pixel properties. :return: None """ # Redirect the output stream old_stdout = sys.stdout f = six.StringIO() # f = open('Detector_initialization.log', 'w') sys.stdout = f ########################################################################################### # Initialize the geometry configuration ############################################################################################ self.geometry = GeometryAccess(geom, 0o377) self.run_num = run_num # Set coordinate in real space temp = self.geometry.get_pixel_coords() temp_index = self.geometry.get_pixel_coord_indexes() self.panel_num = temp[0].shape[1] * temp[0].shape[2] self.distance = temp[2][0, 0, 0, 0, 0] * 1e-6 # Convert to m self.pixel_position = np.zeros( (self.panel_num, temp[0].shape[3], temp[0].shape[4], 3)) self.pixel_index_map = np.zeros( (self.panel_num, temp[0].shape[3], temp[0].shape[4], 2)) for l in range(temp[0].shape[1]): for m in range(temp[0].shape[2]): for n in range(3): self.pixel_position[m + l * temp[0].shape[2], :, :, n] = temp[n][0, l, m] for n in range(2): self.pixel_index_map[m + l * temp[0].shape[2], :, :, n] = temp_index[n][0, l, m] self.pixel_index_map = self.pixel_index_map.astype(np.int64) # Get the range of the pixel index self.detector_pixel_num_x = np.max(self.pixel_index_map[:, :, :, 0]) + 1 self.detector_pixel_num_y = np.max(self.pixel_index_map[:, :, :, 1]) + 1 self.panel_pixel_num_x = np.array([ self.pixel_index_map.shape[1], ] * self.panel_num) self.panel_pixel_num_y = np.array([ self.pixel_index_map.shape[2], ] * self.panel_num) self.pixel_num_total = np.sum( np.multiply(self.panel_pixel_num_x, self.panel_pixel_num_y)) tmp = float(self.geometry.get_pixel_scale_size() * 1e-6) # Convert to m self.pixel_width = np.ones((self.panel_num, self.panel_pixel_num_x[0], self.panel_pixel_num_y[0])) * tmp self.pixel_height = np.ones((self.panel_num, self.panel_pixel_num_x[0], self.panel_pixel_num_y[0])) * tmp # Calculate the pixel area self.pixel_area = np.multiply(self.pixel_height, self.pixel_width) ########################################################################################### # Initialize the pixel effects ########################################################################################### # first we should parse the path parsed_path = geom.split('/') source = parsed_path[-3] if six.PY2: cbase = CalibParsBasePnccdV1() calibdir = '/'.join(parsed_path[:-4]) group = parsed_path[-4] pbits = 255 gcp = GenericCalibPars(cbase, calibdir, group, source, run_num, pbits) self._pedestals = gcp.pedestals() self._pixel_rms = gcp.pixel_rms() self._pixel_mask = gcp.pixel_mask() self._pixel_bkgd = gcp.pixel_bkgd() self._pixel_status = gcp.pixel_status() self._pixel_gain = gcp.pixel_gain() else: self.det = "pnccd_000" + source[-1] self.exp = parsed_path[-5] self._pedestals = None self._pixel_rms = None self._pixel_mask = None self._pixel_bkgd = None self._pixel_status = None self._pixel_gain = None # Redirect the output stream sys.stdout = old_stdout # f.close() # os.remove('./Detector_initialization.log') @property def pedestals(self): if six.PY3 and not self._pedestals: self._pedestals = calib_constants(self.det, exp=self.exp, ctype="pedestals", run=self.run_num)[0] return self._pedestals @property def pixel_rms(self): if six.PY3 and not self._pixel_rms: self._pixel_rms = calib_constants(self.det, exp=self.exp, ctype="pixel_rms", run=self.run_num)[0] return self._pixel_rms @property def pixel_mask(self): if six.PY3 and not self._pixel_mask: self._pixel_mask = calib_constants(self.det, exp=self.exp, ctype="pixel_mask", run=self.run_num)[0] return self._pixel_mask @property def pixel_bkgd(self): if six.PY3 and not self._pixel_bkgd: self._pixel_bkgd = calib_constants(self.det, exp=self.exp, ctype="pixel_bkgd", run=self.run_num)[0] return self._pixel_bkgd @property def pixel_status(self): if six.PY3 and not self._pixel_status: self._pixel_status = calib_constants(self.det, exp=self.exp, ctype="pixel_status", run=self.run_num)[0] return self._pixel_status @property def pixel_gain(self): if six.PY3 and not self._pixel_gain: self._pixel_gain = calib_constants(self.det, exp=self.exp, ctype="pixel_gain", run=self.run_num)[0] return self._pixel_gain def assemble_image_stack(self, image_stack): """ Assemble the image stack into a 2D diffraction pattern. For this specific object, since it only has one panel, the result is to remove the first dimension. :param image_stack: The [1, num_x, num_y] numpy array. :return: The [num_x, num_y] numpy array. """ # construct the image holder: image = np.zeros( (self.detector_pixel_num_x, self.detector_pixel_num_y)) for l in range(self.panel_num): image[self.pixel_index_map[l, :, :, 0], self.pixel_index_map[l, :, :, 1]] = image_stack[l, :, :] return image def assemble_image_stack_batch(self, image_stack_batch): """ Assemble the image stack batch into a stack of 2D diffraction patterns. For this specific object, since it has only one panel, the result is a simple reshape. :param image_stack_batch: The [stack_num, 1, num_x, num_y] numpy array :return: The [stack_num, num_x, num_y] numpy array """ stack_num = image_stack_batch.shape[0] # construct the image holder: image = np.zeros( (stack_num, self.detector_pixel_num_x, self.detector_pixel_num_y)) for l in range(self.panel_num): idx_map_1 = self.pixel_index_map[l, :, :, 0] idx_map_2 = self.pixel_index_map[l, :, :, 1] image[:, idx_map_1, idx_map_2] = image_stack_batch[:, l] return image
class LCLSDetector(DetectorBase): """ Class for lcls detectors. """ def __init__(self, geom, beam=None, run_num=0): """ Initialize a pnccd detector. :param geom: The path to the geometry .data file. :param beam: The beam object. :param run_num: The run_num containing the background, rms and gain and the other pixel pixel properties. """ super(LCLSDetector, self).__init__() # Parse the path to extract the necessary information to use psana modules parsed_path = geom.split('/') # Notify the user that the path should be as deep as the geometry profile if parsed_path[-2] != "geometry": # print parsed_path[-1] raise Exception( " Sorry, at present, the package is not very smart. Please specify " + "the path of the detector as deep as the geometry profile. \n " + "And example would be like:" + "/reg/d/psdm/amo/experiment_name/calib/group/source/geometry/0-end.data \n" + "where the '/calib/group/source/geometry/0-end.data' part is essential. \n" + "The address before that part is not essential and can be replaced with" + " your absolute address or relative address.\n" "The experiment_name is also essential in Python 3.") self.initialize(geom=geom, run_num=run_num) # Initialize the pixel effects self.initialize_pixels_with_beam(beam=beam) def initialize(self, geom, run_num=0): """ Initialize the detector as pnccd :param geom: The pnccd .data file which characterize the geometry profile. :param run_num: The run_num containing the background, rms and gain and the other pixel pixel properties. :return: None """ # Redirect the output stream old_stdout = sys.stdout f = six.StringIO() # f = open('Detector_initialization.log', 'w') sys.stdout = f ########################################################################################### # Initialize the geometry configuration ############################################################################################ self.geometry = GeometryAccess(geom, 0) self.run_num = run_num # Set coordinate in real space (convert to m) temp = [xp.asarray(t) * 1e-6 for t in self.geometry.get_pixel_coords()] temp_index = [xp.asarray(t) for t in self.geometry.get_pixel_coord_indexes()] self.panel_num = np.prod(temp[0].shape[:-2]) self._distance = float(temp[2].mean()) self._shape = (self.panel_num, temp[0].shape[-2], temp[0].shape[-1]) self.pixel_position = xp.zeros(self._shape + (3,)) self.pixel_index_map = xp.zeros(self._shape + (2,)) for n in range(3): self.pixel_position[..., n] = temp[n].reshape(self._shape) for n in range(2): self.pixel_index_map[..., n] = temp_index[n].reshape(self._shape) self.pixel_index_map = self.pixel_index_map.astype(xp.int64) # Get the range of the pixel index self.detector_pixel_num_x = asnumpy( xp.max(self.pixel_index_map[..., 0]) + 1) self.detector_pixel_num_y = asnumpy( xp.max(self.pixel_index_map[..., 1]) + 1) self.panel_pixel_num_x = np.array([self.pixel_index_map.shape[1], ] * self.panel_num) self.panel_pixel_num_y = np.array([self.pixel_index_map.shape[2], ] * self.panel_num) self.pixel_num_total = np.sum(np.multiply(self.panel_pixel_num_x, self.panel_pixel_num_y)) tmp = float(self.geometry.get_pixel_scale_size() * 1e-6) # Convert to m self.pixel_width = xp.ones( (self.panel_num, self.panel_pixel_num_x[0], self.panel_pixel_num_y[0])) * tmp self.pixel_height = xp.ones( (self.panel_num, self.panel_pixel_num_x[0], self.panel_pixel_num_y[0])) * tmp # Calculate the pixel area self.pixel_area = xp.multiply(self.pixel_height, self.pixel_width) ########################################################################################### # Initialize the pixel effects ########################################################################################### # first we should parse the path parsed_path = geom.split('/') group = parsed_path[-4] source = parsed_path[-3] self._pedestals = None self._pixel_rms = None self._pixel_mask = None self._pixel_bkgd = None self._pixel_status = None self._pixel_gain = None if six.PY2: try: cbase = self._get_cbase() calibdir = '/'.join(parsed_path[:-4]) pbits = 255 gcp = GenericCalibPars(cbase, calibdir, group, source, run_num, pbits) self._pedestals = gcp.pedestals() self._pixel_rms = gcp.pixel_rms() self._pixel_mask = gcp.pixel_mask() self._pixel_bkgd = gcp.pixel_bkgd() self._pixel_status = gcp.pixel_status() self._pixel_gain = gcp.pixel_gain() except NotImplementedError: # No GenericCalibPars information. pass else: try: self.det = self._get_det_id(source) except NotImplementedError: # No GenericCalibPars information. self.det = None self.exp = parsed_path[-5] # Redirect the output stream sys.stdout = old_stdout # f.close() # os.remove('./Detector_initialization.log') def _get_cbase(self): """Get detector calibration base object. Psana 1 only. """ raise NotImplementedError() def _get_det_id(self, source): """Get detector ID form source. Psana 2 only. """ raise NotImplementedError() def _get_calib_constants(self, name): _name = "_" + name attribute = getattr(self, _name) if six.PY3 and attribute is None and self.det is not None: # We haven't tried to get the calib_constant yet. attribute = calib_constants( self.det, exp=self.exp, ctype=name, run=self.run_num)[0] if attribute is None: # We still don't have it raise RuntimeError("No {} available for this detector" "".format(name)) setattr(self, _name, attribute) return attribute @property def pedestals(self): return self._get_calib_constants("pedestals") @property def pixel_rms(self): return self._get_calib_constants("pixel_rms") @property def pixel_mask(self): return self._get_calib_constants("pixel_mask") @property def pixel_bkgd(self): return self._get_calib_constants("pixel_bkgd") @property def pixel_status(self): return self._get_calib_constants("pixel_status") @property def pixel_gain(self): return self._get_calib_constants("pixel_gain")
class LCLSDetector(DetectorBase): """ Class for LCLS detectors. """ def __init__(self, geom, beam=None, run_num=0, cframe=0): """ Initialize a LCLS detector. :param geom: The path to the geometry .data file. :param beam: The beam object. :param run_num: The run_num containing the background, rms and gain and the other pixel pixel properties. :param cframe: The desired coordinate frame, 0 for psana and 1 for lab conventions. The default (psana) matches the convention of non-LCLS detectors. Lab frame yields the transpose. """ super(LCLSDetector, self).__init__() # Parse the path to extract the necessary information to use psana modules parsed_path = geom.split('/') # Notify the user that the path should be as deep as the geometry profile if parsed_path[-2] != "geometry": # print parsed_path[-1] raise Exception( " Sorry, at present, the package is not very smart. Please specify " + "the path of the detector as deep as the geometry profile. \n " + "And example would be like:" + "/reg/d/psdm/amo/experiment_name/calib/group/source/geometry/0-end.data \n" + "where the '/calib/group/source/geometry/0-end.data' part is essential. \n" + "The address before that part is not essential and can be replaced with" + " your absolute address or relative address.\n" "The experiment_name is also essential in Python 3.") self.initialize(geom=geom, run_num=run_num, cframe=cframe) # Initialize the pixel effects, enforcing detector distance to be positive if self.distance < 0: self.distance *= -1 self.initialize_pixels_with_beam(beam=beam) def initialize(self, geom, run_num=0, cframe=0): """ Initialize the detector :param geom: The *-end.data file which characterizes the geometry profile. :param run_num: The run_num containing the background, rms and gain and the other pixel pixel properties. :param cframe: The desired coordinate frame, 0 for psana and 1 for lab conventions. :return: None """ # Redirect the output stream old_stdout = sys.stdout f = six.StringIO() # f = open('Detector_initialization.log', 'w') sys.stdout = f ########################################################################################### # Initialize the geometry configuration ############################################################################################ self.geometry = GeometryAccess(geom, cframe=cframe) self.run_num = run_num # Set coordinate in real space (convert to m) temp = [ xp.asarray(t) * 1e-6 for t in self.geometry.get_pixel_coords(cframe=cframe) ] temp_index = [ xp.asarray(t) for t in self.geometry.get_pixel_coord_indexes(cframe=cframe) ] self.panel_num = np.prod(temp[0].shape[:-2]) self._distance = float(temp[2].mean()) self._shape = (self.panel_num, temp[0].shape[-2], temp[0].shape[-1]) self.pixel_position = xp.zeros(self._shape + (3, )) self.pixel_index_map = xp.zeros(self._shape + (2, )) for n in range(3): self.pixel_position[..., n] = temp[n].reshape(self._shape) for n in range(2): self.pixel_index_map[..., n] = temp_index[n].reshape(self._shape) self.pixel_index_map = self.pixel_index_map.astype(xp.int64) # Get the range of the pixel index self.detector_pixel_num_x = asnumpy( xp.max(self.pixel_index_map[..., 0]) + 1) self.detector_pixel_num_y = asnumpy( xp.max(self.pixel_index_map[..., 1]) + 1) self.panel_pixel_num_x = np.array([ self.pixel_index_map.shape[1], ] * self.panel_num) self.panel_pixel_num_y = np.array([ self.pixel_index_map.shape[2], ] * self.panel_num) self.pixel_num_total = np.sum( np.multiply(self.panel_pixel_num_x, self.panel_pixel_num_y)) tmp = float(self.geometry.get_pixel_scale_size() * 1e-6) # Convert to m self.pixel_width = xp.ones((self.panel_num, self.panel_pixel_num_x[0], self.panel_pixel_num_y[0])) * tmp self.pixel_height = xp.ones((self.panel_num, self.panel_pixel_num_x[0], self.panel_pixel_num_y[0])) * tmp # Calculate the pixel area self.pixel_area = xp.multiply(self.pixel_height, self.pixel_width) ########################################################################################### # Initialize the pixel effects ########################################################################################### # first we should parse the path parsed_path = geom.split('/') self.exp = parsed_path[-5] if self.exp == 'calib': self.exp = parsed_path[-6] self.group = parsed_path[-4] self.source = parsed_path[-3] self._pedestals = None self._pixel_rms = None self._pixel_mask = None self._pixel_bkgd = None self._pixel_status = None self._pixel_gain = None if six.PY2: try: cbase = self._get_cbase() self.calibdir = '/'.join(parsed_path[:-4]) pbits = 255 gcp = GenericCalibPars(cbase, self.calibdir, self.group, self.source, run_num, pbits) self._pedestals = gcp.pedestals() self._pixel_rms = gcp.pixel_rms() self._pixel_mask = gcp.pixel_mask() self._pixel_bkgd = gcp.pixel_bkgd() self._pixel_status = gcp.pixel_status() self._pixel_gain = gcp.pixel_gain() except NotImplementedError: # No GenericCalibPars information. pass else: try: self.det = self._get_det_id(self.group) except NotImplementedError: # No GenericCalibPars information. self.det = None # Redirect the output stream sys.stdout = old_stdout # f.close() # os.remove('./Detector_initialization.log') def _get_cbase(self): """Get detector calibration base object. Psana 1 only. """ raise NotImplementedError() def _get_det_id(self, group): """Get detector ID form source. Psana 2 only. """ raise NotImplementedError() def _get_calib_constants(self, name): _name = "_" + name attribute = getattr(self, _name) if six.PY3 and attribute is None and self.det is not None: # We haven't tried to get the calib_constant yet. attribute = calib_constants(self.det, exp=self.exp, ctype=name, run=self.run_num)[0] if attribute is None: # We still don't have it raise RuntimeError("No {} available for this detector" "".format(name)) setattr(self, _name, attribute) return attribute @property def pedestals(self): return self._get_calib_constants("pedestals") @property def pixel_rms(self): return self._get_calib_constants("pixel_rms") @property def pixel_mask(self): return self._get_calib_constants("pixel_mask") @property def pixel_bkgd(self): return self._get_calib_constants("pixel_bkgd") @property def pixel_status(self): return self._get_calib_constants("pixel_status") @property def pixel_gain(self): return self._get_calib_constants("pixel_gain") @pedestals.setter def pedestals(self, value): self._pedestals = value @pixel_rms.setter def pixel_rms(self, value): self._pixel_rms = value @pixel_mask.setter def pixel_mask(self, value): self._pixel_mask = value @pixel_bkgd.setter def pixel_bkgd(self, value): self._pixel_bkgd = value @pixel_status.setter def pixel_status(self, value): self._pixel_status = value @pixel_gain.setter def pixel_gain(self, value): self._pixel_gain = value def reset_calib(self, run_num): """ Update calibration pixel effects based on new run number. """ old_stdout = sys.stdout f = six.StringIO() sys.stdout = f self.run_num = run_num if six.PY2: try: pbits = 255 gcp = GenericCalibPars(self._get_cbase(), self.calibdir, self.group, self.source, self.run_num, pbits) self._pedestals = gcp.pedestals() self._pixel_rms = gcp.pixel_rms() self._pixel_mask = gcp.pixel_mask() self._pixel_bkgd = gcp.pixel_bkgd() self._pixel_status = gcp.pixel_status() self._pixel_gain = gcp.pixel_gain() except NotImplementedError: pass else: self._pedestals = calib_constants(self.det, exp=self.exp, ctype='pedestals', run=self.run_num)[0] self._pixel_rms = calib_constants(self.det, exp=self.exp, ctype='pixel_rms', run=self.run_num)[0] self._pixel_mask = calib_constants(self.det, exp=self.exp, ctype='pixel_mask', run=self.run_num)[0] self._pixel_bkgd = calib_constants(self.det, exp=self.exp, ctype='pixel_bkgd', run=self.run_num)[0] self._pixel_status = calib_constants(self.det, exp=self.exp, ctype='pixel_status', run=self.run_num)[0] self._pixel_gain = calib_constants(self.det, exp=self.exp, ctype='pixel_gain', run=self.run_num)[0] sys.stdout = old_stdout return ########################################################################################### # Functionality for adding dark noise ########################################################################################### def _calibrate_evt(self, evt): """ Retrieve calibrated data from psana event object. Applied corrections are pedestal, common mode, gain mask, gain, and pixel status mask, performed by the psana.Detector class. :param evt: psana event object :return data: calibrated image """ import psana # retrieve psana.Source alias det_type = self.__class__.__name__.split("Detector")[0].lower() alias = None for key in evt.keys(): if det_type in key.alias().lower(): alias = key.alias() break else: srcname = key.src() if srcname.__class__.__name__ == 'DetInfo': if det_type in srcname.devName().lower(): alias = str(srcname) break # retrieve calibrated shot det = psana.Detector(alias) return det.calib(evt) def _retrieve_batch_evt(self, num_shots): """ Retrieve num_shots patterns from a run of the experiment. :param num_shots: number of patterns to retrieve :return data: array of patterns in shape (num_shots, n_pedestals, ped_x, ped_y) """ # set up psana1 DataSource object from psana import DataSource ds = DataSource('exp=%s:run=%i' % (self.exp, self.run_num)) # set up storage array if self.pedestals.ndim == 4: pshape = self.pedestals.shape[1:] else: pshape = self.pedestals.shape data = np.zeros((num_shots, pshape[0], pshape[1], pshape[2])) # retrieve multiple events (shots) counter = 0 for num, evt in enumerate(ds.events()): if counter < num_shots: data[counter] = np.array(self._calibrate_evt(evt)) counter += 1 else: break # if run is shorter than num_shots, fill in remainder by linear combination if counter < num_shots: for i in range(counter, num_shots): indices = np.random.randint(0, high=counter, size=2) weights = np.random.dirichlet(np.ones(2)) data[i] = weights[0] * data[indices[0]] + weights[1] * data[ indices[1]] return data def _random_dark_index(self): """ Return the run index of random dark run, assuming that the indices of dark runs can be inferred from the pedestal nomenclature. :return dark_idx: index of random dark run, -1 if no dark runs available """ import glob # list of available pedestals pnames = glob.glob( "/reg/d/psdm/%s/%s/calib/%s/%s/pedestals/*-end.data" % (self.exp[:3].upper(), self.exp, self.group, self.source)) # add run indices from pedestals list if associated XTC files exist dark_indices = list() for pn in pnames: temp_str = pn.split("/")[-1] temp_idx = int(temp_str.split("-")[0]) fnames = glob.glob("/reg/d/psdm/%s/%s/xtc/*-r%04d-*.xtc" % (self.exp[:3].upper(), self.exp, temp_idx)) if len(fnames) > 0: dark_indices.append(temp_idx) # return random dark run or -1 if none available if len(dark_indices) != 0: return np.random.choice(np.array(dark_indices)) else: return -1 def add_dark_noise(self, num_shots, det_shape=True, dark_idx=None, mask_neg=True): """ Retrieve calibrated images from dark runs. :param num_shots: number of calibrated dark shots to retreive :param det_shape: boolean, if True reassemble panels into detector's shape :param dark_idx: index of dark run; if None, a run number will be chosen randomly :param mask_neg: boolean, if True set negative-valued pixels to zero :return dark_data: array of calibrated dark shots with shape (num_shots, det_x, det_y) if det_shape is True (num_shots, n_panels, panel_x, panel_y) if det_shape is False None if pedestals and/or XTC files for a dark run are unavailable """ if six.PY3: raise NotImplementedError( 'Currently only implemented for psana2/python3.') return # grab index of random dark run and reset calibration attributes to match if dark_idx == None: dark_idx = self._random_dark_index() if dark_idx == -1: print("Pedestals and/or XTC data are unavailable.") return self.reset_calib(dark_idx) # retrieve dark data dark_data = self._retrieve_batch_evt(num_shots) # floor: set negative intensities to zero if mask_neg: dark_data[dark_data < 0] = 0 # optionally reshape to match detector's shape if det_shape: dark_data = self.assemble_image_stack_batch(dark_data) return dark_data
def read_slac_metrology(path = None, geometry = None, plot=False, include_asic_offset=False): if path is None and geometry is None: raise Sorry("Need to provide a geometry object or a path to a geometry file") if path is not None and geometry is not None: raise Sorry("Cannot provide a geometry object and a geometry file. Ambiguous") if geometry is None: try: from PSCalib.GeometryAccess import GeometryAccess geometry = GeometryAccess(path) except Exception as e: raise Sorry("Can't parse this metrology file") metro = {} pixel_size = geometry.get_pixel_scale_size()/1000 null_ori = matrix.col((0,0,1)).axis_and_angle_as_unit_quaternion(0, deg=True) # collapse any transformations above those of the quadrants into one X/Y offset, # but don't keep Z transformations, as those come from the XTC stream root = geometry.get_top_geo() root_basis = basis_from_geo(root, use_z=False) while len(root.get_list_of_children()) != 4 and len(root.get_list_of_children()) != 32: assert len(root.get_list_of_children()) == 1 root = root.get_list_of_children()[0] root_basis *= basis_from_geo(root, use_z=False) metro[(0,)] = root_basis def add_sensor(quad_id, sensor_id, sensor): metro[(0,quad_id,sensor_id)] = basis_from_geo(sensor) x, y, z = sensor.get_pixel_coords() x/=1000; y/=1000; z/=1000 assert x.shape == y.shape == z.shape sensor_px_slow = x.shape[0] sensor_px_fast = x.shape[1] assert sensor_px_fast % 2 == 0 a0ul = sul = matrix.col((x[0,0],y[0,0],z[0,0])) a1ur = sur = matrix.col((x[0,sensor_px_fast-1],y[0,sensor_px_fast-1],z[0,sensor_px_fast-1])) a1lr = slr = matrix.col((x[sensor_px_slow-1,sensor_px_fast-1],y[sensor_px_slow-1,sensor_px_fast-1],z[sensor_px_slow-1,sensor_px_fast-1])) a0ll = sll = matrix.col((x[sensor_px_slow-1,0],y[sensor_px_slow-1,0],z[sensor_px_slow-1,0])) a0ur = matrix.col((x[0,sensor_px_fast//2-1],y[0,sensor_px_fast//2-1],z[0,sensor_px_fast//2-1])) a0lr = matrix.col((x[sensor_px_slow-1,sensor_px_fast//2-1],y[sensor_px_slow-1,sensor_px_fast//2-1],z[sensor_px_slow-1,sensor_px_fast//2-1])) a1ul = matrix.col((x[0,sensor_px_fast//2],y[0,sensor_px_fast//2],z[0,sensor_px_fast//2])) a1ll = matrix.col((x[sensor_px_slow-1,sensor_px_fast//2],y[sensor_px_slow-1,sensor_px_fast//2],z[sensor_px_slow-1,sensor_px_fast//2])) sensor_center = center([sul,sur,slr,sll]) asic0_center = center([a0ul,a0ur,a0lr,a0ll]) asic1_center = center([a1ul,a1ur,a1lr,a1ll]) asic_trans0 = (asic0_center-sensor_center).length() asic_trans1 = (asic1_center-sensor_center).length() if include_asic_offset: rotated_ori = matrix.col((1,0,0)).axis_and_angle_as_unit_quaternion(180.0, deg=True) offset_fast = -pixel_size*((sensor_px_fast) / 4) # 4 because sensor_px_fast is for sensor offset_slow = +pixel_size*((sensor_px_slow) / 2) # Sensor is divided into 2 only in fast direction metro[(0,quad_id,sensor_id,0)] = basis(orientation=rotated_ori,translation=matrix.col((-asic_trans0,0,0))) metro[(0,quad_id,sensor_id,1)] = basis(orientation=rotated_ori,translation=matrix.col((+asic_trans1,0,0))) metro[(0,quad_id,sensor_id,0)].translation += matrix.col((offset_fast, offset_slow, 0)) metro[(0,quad_id,sensor_id,1)].translation += matrix.col((offset_fast, offset_slow, 0)) else: metro[(0,quad_id,sensor_id,0)] = basis(orientation=null_ori,translation=matrix.col((-asic_trans0,0,0))) metro[(0,quad_id,sensor_id,1)] = basis(orientation=null_ori,translation=matrix.col((+asic_trans1,0,0))) if len(root.get_list_of_children()) == 4: for quad_id, quad in enumerate(root.get_list_of_children()): metro[(0,quad_id)] = basis_from_geo(quad) for sensor_id, sensor in enumerate(quad.get_list_of_children()): add_sensor(quad_id, sensor_id, sensor) elif len(root.get_list_of_children()) == 32: for quad_id in range(4): metro[(0,quad_id)] = basis(orientation = null_ori, translation = matrix.col((0,0,0))) sensors = root.get_list_of_children() for sensor_id in range(8): add_sensor(quad_id, sensor_id, sensors[quad_id*4+sensor_id]) else: assert False return metro