def test_predict_proba_batched(self):
        cs = ParamSklearnClassifier.get_hyperparameter_search_space()
        default = cs.get_default_configuration()

        # Multiclass
        cls = ParamSklearnClassifier(default)
        X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits')
        cls.fit(X_train, Y_train)
        X_test_ = X_test.copy()
        prediction_ = cls.predict_proba(X_test_)
        # The object behind the last step in the pipeline
        cls_predict = mock.Mock(wraps=cls.pipeline_.steps[-1][1])
        cls.pipeline_.steps[-1] = ("estimator", cls_predict)
        prediction = cls.predict_proba(X_test, batch_size=20)
        self.assertEqual((1647, 10), prediction.shape)
        self.assertEqual(84, cls_predict.predict_proba.call_count)
        assert_array_almost_equal(prediction_, prediction)

        # Multilabel
        cls = ParamSklearnClassifier(default)
        X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits')
        Y_train = np.array([(y, 26 - y) for y in Y_train])
        cls.fit(X_train, Y_train)
        X_test_ = X_test.copy()
        prediction_ = cls.predict_proba(X_test_)
        cls_predict = mock.Mock(wraps=cls.pipeline_.steps[-1][1])
        cls.pipeline_.steps[-1] = ("estimator", cls_predict)
        prediction = cls.predict_proba(X_test, batch_size=20)
        self.assertIsInstance(prediction, list)
        self.assertEqual(2, len(prediction))
        self.assertEqual((1647, 10), prediction[0].shape)
        self.assertEqual((1647, 10), prediction[1].shape)
        self.assertEqual(84, cls_predict.predict_proba.call_count)
        assert_array_almost_equal(prediction_, prediction)
示例#2
0
    def test_predict_proba_batched(self):
        cs = ParamSklearnClassifier.get_hyperparameter_search_space()
        default = cs.get_default_configuration()

        # Multiclass
        cls = ParamSklearnClassifier(default)
        X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits')
        cls.fit(X_train, Y_train)
        X_test_ = X_test.copy()
        prediction_ = cls.predict_proba(X_test_)
        # The object behind the last step in the pipeline
        cls_predict = mock.Mock(wraps=cls.pipeline_.steps[-1][1])
        cls.pipeline_.steps[-1] = ("estimator", cls_predict)
        prediction = cls.predict_proba(X_test, batch_size=20)
        self.assertEqual((1647, 10), prediction.shape)
        self.assertEqual(84, cls_predict.predict_proba.call_count)
        assert_array_almost_equal(prediction_, prediction)

        # Multilabel
        cls = ParamSklearnClassifier(default)
        X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits')
        Y_train = np.array([(y, 26 - y) for y in Y_train])
        cls.fit(X_train, Y_train)
        X_test_ = X_test.copy()
        prediction_ = cls.predict_proba(X_test_)
        cls_predict = mock.Mock(wraps=cls.pipeline_.steps[-1][1])
        cls.pipeline_.steps[-1] = ("estimator", cls_predict)
        prediction = cls.predict_proba(X_test, batch_size=20)
        self.assertIsInstance(prediction, list)
        self.assertEqual(2, len(prediction))
        self.assertEqual((1647, 10), prediction[0].shape)
        self.assertEqual((1647, 10), prediction[1].shape)
        self.assertEqual(84, cls_predict.predict_proba.call_count)
        assert_array_almost_equal(prediction_, prediction)
示例#3
0
    def test_predict_proba_batched_sparse(self):
        cs = ParamSklearnClassifier.get_hyperparameter_search_space(
            dataset_properties={'sparse': True})

        config = Configuration(
            cs,
            values={
                "balancing:strategy": "none",
                "classifier:__choice__": "random_forest",
                "imputation:strategy": "mean",
                "one_hot_encoding:minimum_fraction": 0.01,
                "one_hot_encoding:use_minimum_fraction": 'True',
                "preprocessor:__choice__": "no_preprocessing",
                'classifier:random_forest:bootstrap': 'True',
                'classifier:random_forest:criterion': 'gini',
                'classifier:random_forest:max_depth': 'None',
                'classifier:random_forest:min_samples_split': 2,
                'classifier:random_forest:min_samples_leaf': 2,
                'classifier:random_forest:min_weight_fraction_leaf': 0.0,
                'classifier:random_forest:max_features': 0.5,
                'classifier:random_forest:max_leaf_nodes': 'None',
                'classifier:random_forest:n_estimators': 100,
                "rescaling:__choice__": "min/max"
            })

        # Multiclass
        cls = ParamSklearnClassifier(config)
        X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits',
                                                       make_sparse=True)
        cls.fit(X_train, Y_train)
        X_test_ = X_test.copy()
        prediction_ = cls.predict_proba(X_test_)
        # The object behind the last step in the pipeline
        cls_predict = mock.Mock(wraps=cls.pipeline_.steps[-1][1])
        cls.pipeline_.steps[-1] = ("estimator", cls_predict)
        prediction = cls.predict_proba(X_test, batch_size=20)
        self.assertEqual((1647, 10), prediction.shape)
        self.assertEqual(84, cls_predict.predict_proba.call_count)
        assert_array_almost_equal(prediction_, prediction)

        # Multilabel
        cls = ParamSklearnClassifier(config)
        X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits',
                                                       make_sparse=True)
        Y_train = np.array([(y, 26 - y) for y in Y_train])
        cls.fit(X_train, Y_train)
        X_test_ = X_test.copy()
        prediction_ = cls.predict_proba(X_test_)
        cls_predict = mock.Mock(wraps=cls.pipeline_.steps[-1][1])
        cls.pipeline_.steps[-1] = ("estimator", cls_predict)
        prediction = cls.predict_proba(X_test, batch_size=20)
        self.assertIsInstance(prediction, list)
        self.assertEqual(2, len(prediction))
        self.assertEqual((1647, 10), prediction[0].shape)
        self.assertEqual((1647, 10), prediction[1].shape)
        self.assertEqual(84, cls_predict.predict_proba.call_count)
        assert_array_almost_equal(prediction_, prediction)
    def test_predict_proba_batched_sparse(self):
        cs = ParamSklearnClassifier.get_hyperparameter_search_space(
            dataset_properties={'sparse': True})

        config = Configuration(cs,
                               values={"balancing:strategy": "none",
                                       "classifier:__choice__": "random_forest",
                                       "imputation:strategy": "mean",
                                       "one_hot_encoding:minimum_fraction": 0.01,
                                       "one_hot_encoding:use_minimum_fraction": 'True',
                                       "preprocessor:__choice__": "no_preprocessing",
                                       'classifier:random_forest:bootstrap': 'True',
                                       'classifier:random_forest:criterion': 'gini',
                                       'classifier:random_forest:max_depth': 'None',
                                       'classifier:random_forest:min_samples_split': 2,
                                       'classifier:random_forest:min_samples_leaf': 2,
                                       'classifier:random_forest:min_weight_fraction_leaf': 0.0,
                                       'classifier:random_forest:max_features': 0.5,
                                       'classifier:random_forest:max_leaf_nodes': 'None',
                                       'classifier:random_forest:n_estimators': 100,
                                       "rescaling:__choice__": "min/max"})

        # Multiclass
        cls = ParamSklearnClassifier(config)
        X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits',
                                                       make_sparse=True)
        cls.fit(X_train, Y_train)
        X_test_ = X_test.copy()
        prediction_ = cls.predict_proba(X_test_)
        # The object behind the last step in the pipeline
        cls_predict = mock.Mock(wraps=cls.pipeline_.steps[-1][1])
        cls.pipeline_.steps[-1] = ("estimator", cls_predict)
        prediction = cls.predict_proba(X_test, batch_size=20)
        self.assertEqual((1647, 10), prediction.shape)
        self.assertEqual(84, cls_predict.predict_proba.call_count)
        assert_array_almost_equal(prediction_, prediction)

        # Multilabel
        cls = ParamSklearnClassifier(config)
        X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits',
                                                       make_sparse=True)
        Y_train = np.array([(y, 26 - y) for y in Y_train])
        cls.fit(X_train, Y_train)
        X_test_ = X_test.copy()
        prediction_ = cls.predict_proba(X_test_)
        cls_predict = mock.Mock(wraps=cls.pipeline_.steps[-1][1])
        cls.pipeline_.steps[-1] = ("estimator", cls_predict)
        prediction = cls.predict_proba(X_test, batch_size=20)
        self.assertIsInstance(prediction, list)
        self.assertEqual(2, len(prediction))
        self.assertEqual((1647, 10), prediction[0].shape)
        self.assertEqual((1647, 10), prediction[1].shape)
        self.assertEqual(84, cls_predict.predict_proba.call_count)
        assert_array_almost_equal(prediction_, prediction)
    def test_configurations_signed_data(self):
        # Use a limit of ~4GiB
        limit = 4000 * 1024 * 1024
        resource.setrlimit(resource.RLIMIT_AS, (limit, limit))

        cs = ParamSklearnClassifier.get_hyperparameter_search_space(
            dataset_properties={'signed': True})

        print(cs)

        for i in range(10):
            config = cs.sample_configuration()
            config._populate_values()
            if config['classifier:passive_aggressive:n_iter'] is not None:
                config._values['classifier:passive_aggressive:n_iter'] = 5
            if config['classifier:sgd:n_iter'] is not None:
                config._values['classifier:sgd:n_iter'] = 5

            X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits')
            cls = ParamSklearnClassifier(config, random_state=1)
            print(config)
            try:
                cls.fit(X_train, Y_train)
                X_test_ = X_test.copy()
                predictions = cls.predict(X_test)
                self.assertIsInstance(predictions, np.ndarray)
                predicted_probabiliets = cls.predict_proba(X_test_)
                self.assertIsInstance(predicted_probabiliets, np.ndarray)
            except ValueError as e:
                if "Floating-point under-/overflow occurred at epoch" in \
                       e.args[0] or \
                       "removed all features" in e.args[0] or \
                                "all features are discarded" in e.args[0]:
                    continue
                else:
                    print(config)
                    print(traceback.format_exc())
                    raise e
            except RuntimeWarning as e:
                if "invalid value encountered in sqrt" in e.args[0]:
                    continue
                elif "divide by zero encountered in" in e.args[0]:
                    continue
                elif "invalid value encountered in divide" in e.args[0]:
                    continue
                elif "invalid value encountered in true_divide" in e.args[0]:
                    continue
                else:
                    print(config)
                    print(traceback.format_exc())
                    raise e
            except UserWarning as e:
                if "FastICA did not converge" in e.args[0]:
                    continue
                else:
                    print(config)
                    print(traceback.format_exc())
                    raise e
            except MemoryError as e:
                continue
示例#6
0
    def test_configurations_signed_data(self):
        # Use a limit of ~4GiB
        limit = 4000 * 1024 * 1024
        resource.setrlimit(resource.RLIMIT_AS, (limit, limit))

        cs = ParamSklearnClassifier.get_hyperparameter_search_space(
            dataset_properties={'signed': True})

        print(cs)

        for i in range(10):
            config = cs.sample_configuration()
            config._populate_values()
            if config['classifier:passive_aggressive:n_iter'] is not None:
                config._values['classifier:passive_aggressive:n_iter'] = 5
            if config['classifier:sgd:n_iter'] is not None:
                config._values['classifier:sgd:n_iter'] = 5

            X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits')
            cls = ParamSklearnClassifier(config, random_state=1)
            print(config)
            try:
                cls.fit(X_train, Y_train)
                X_test_ = X_test.copy()
                predictions = cls.predict(X_test)
                self.assertIsInstance(predictions, np.ndarray)
                predicted_probabiliets = cls.predict_proba(X_test_)
                self.assertIsInstance(predicted_probabiliets, np.ndarray)
            except ValueError as e:
                if "Floating-point under-/overflow occurred at epoch" in \
                       e.args[0] or \
                       "removed all features" in e.args[0] or \
                                "all features are discarded" in e.args[0]:
                    continue
                else:
                    print(config)
                    print(traceback.format_exc())
                    raise e
            except RuntimeWarning as e:
                if "invalid value encountered in sqrt" in e.args[0]:
                    continue
                elif "divide by zero encountered in" in e.args[0]:
                    continue
                elif "invalid value encountered in divide" in e.args[0]:
                    continue
                elif "invalid value encountered in true_divide" in e.args[0]:
                    continue
                else:
                    print(config)
                    print(traceback.format_exc())
                    raise e
            except UserWarning as e:
                if "FastICA did not converge" in e.args[0]:
                    continue
                else:
                    print(config)
                    print(traceback.format_exc())
                    raise e
            except MemoryError as e:
                continue
 def test_default_configuration(self):
     for i in range(2):
         cs = ParamSklearnClassifier.get_hyperparameter_search_space()
         default = cs.get_default_configuration()
         X_train, Y_train, X_test, Y_test = get_dataset(dataset='iris')
         auto = ParamSklearnClassifier(default)
         auto = auto.fit(X_train, Y_train)
         predictions = auto.predict(X_test)
         self.assertAlmostEqual(0.9599999999999995,
             sklearn.metrics.accuracy_score(predictions, Y_test))
         scores = auto.predict_proba(X_test)
示例#8
0
 def test_default_configuration(self):
     for i in range(2):
         cs = ParamSklearnClassifier.get_hyperparameter_search_space()
         default = cs.get_default_configuration()
         X_train, Y_train, X_test, Y_test = get_dataset(dataset='iris')
         auto = ParamSklearnClassifier(default)
         auto = auto.fit(X_train, Y_train)
         predictions = auto.predict(X_test)
         self.assertAlmostEqual(
             0.9599999999999995,
             sklearn.metrics.accuracy_score(predictions, Y_test))
         scores = auto.predict_proba(X_test)
for weight, configuration in zip(weights, configurations):
    for param in configuration:
        try:
            configuration[param] = int(configuration[param])
        except Exception:
            try:
                configuration[param] = float(configuration[param])
            except Exception:
                pass

    classifier = ParamSklearnClassifier(configuration, 1)
    classifiers.append(classifier)
    try:
        classifier.fit(X.copy(), y.copy())
        predictions_valid.append(
            classifier.predict_proba(X_valid.copy()) * weight)
        predictions_test.append(
            classifier.predict_proba(X_test.copy()) * weight)
    except Exception as e:
        print e
        print configuration

# Output the predictions
for name, predictions in [('valid', predictions_valid),
                          ('test', predictions_test)]:
    predictions = np.array(predictions)
    predictions = np.sum(predictions, axis=0)
    predictions = predictions[:, 1].reshape((-1, 1))

    filepath = os.path.join(output, '%s_%s_000.predict' % (dataset, name))
    np.savetxt(filepath, predictions, delimiter=' ')
示例#10
0
    def test_multilabel(self):
        # Use a limit of ~4GiB
        limit = 4000 * 1024 * 1024
        resource.setrlimit(resource.RLIMIT_AS, (limit, limit))

        dataset_properties = {'multilabel': True}
        cs = ParamSklearnClassifier.get_hyperparameter_search_space(dataset_properties=dataset_properties)

        print(cs)
        cs.seed(5)

        for i in range(50):
            X, Y = sklearn.datasets.\
                    make_multilabel_classification(n_samples=150,
                                                   n_features=20,
                                                   n_classes=5,
                                                   n_labels=2,
                                                   length=50,
                                                   allow_unlabeled=True,
                                                   sparse=False,
                                                   return_indicator=True,
                                                   return_distributions=False,
                                                   random_state=1)
            X_train = X[:100, :]
            Y_train = Y[:100, :]
            X_test = X[101:, :]
            Y_test = Y[101:, ]

            config = cs.sample_configuration()
            config._populate_values()

            if 'classifier:passive_aggressive:n_iter' in config:
                config._values['classifier:passive_aggressive:n_iter'] = 5
            if 'classifier:sgd:n_iter' in config:
                config._values['classifier:sgd:n_iter'] = 5

            cls = ParamSklearnClassifier(config, random_state=1)
            print(config)
            try:
                cls.fit(X_train, Y_train)
                X_test_ = X_test.copy()
                predictions = cls.predict(X_test)
                self.assertIsInstance(predictions, np.ndarray)
                predicted_probabilities = cls.predict_proba(X_test_)
                [self.assertIsInstance(i, np.ndarray) for i in predicted_probabilities]
            except ValueError as e:
                if "Floating-point under-/overflow occurred at epoch" in \
                        e.args[0] or \
                        "removed all features" in e.args[0] or \
                        "all features are discarded" in e.args[0]:
                    continue
                else:
                    print(config)
                    print(traceback.format_exc())
                    raise e
            except RuntimeWarning as e:
                if "invalid value encountered in sqrt" in e.args[0]:
                    continue
                elif "divide by zero encountered in" in e.args[0]:
                    continue
                elif "invalid value encountered in divide" in e.args[0]:
                    continue
                elif "invalid value encountered in true_divide" in e.args[0]:
                    continue
                else:
                    print(config)
                    print(traceback.format_exc())
                    raise e
            except UserWarning as e:
                if "FastICA did not converge" in e.args[0]:
                    continue
                else:
                    print(config)
                    print(traceback.format_exc())
                    raise e
            except MemoryError as e:
                continue
# Make predictions and weight them
for weight, configuration in zip(weights, configurations):
    for param in configuration:
        try:
            configuration[param] = int(configuration[param])
        except Exception:
            try:
                configuration[param] = float(configuration[param])
            except Exception:
                pass

    classifier = ParamSklearnClassifier(configuration, 1)
    classifiers.append(classifier)
    try:
        classifier.fit(X.copy(), y.copy())
        predictions_valid.append(classifier.predict_proba(X_valid.copy()) * weight)
        predictions_test.append(classifier.predict_proba(X_test.copy()) * weight)
    except Exception as e:
        print e
        print configuration

# Output the predictions
for name, predictions in [('valid', predictions_valid),
                          ('test', predictions_test)]:
    predictions = np.array(predictions)
    predictions = np.sum(predictions, axis=0)
    predictions = predictions[:, 1].reshape((-1, 1))

    filepath = os.path.join(output, '%s_%s_000.predict' % (dataset, name))
    np.savetxt(filepath, predictions, delimiter=' ')
示例#12
0
    def test_multilabel(self):
        # Use a limit of ~4GiB
        limit = 4000 * 1024 * 1024
        resource.setrlimit(resource.RLIMIT_AS, (limit, limit))

        dataset_properties = {'multilabel': True}
        cs = ParamSklearnClassifier.get_hyperparameter_search_space(
            dataset_properties=dataset_properties)

        print(cs)
        cs.seed(5)

        for i in range(50):
            X, Y = sklearn.datasets.\
                    make_multilabel_classification(n_samples=150,
                                                   n_features=20,
                                                   n_classes=5,
                                                   n_labels=2,
                                                   length=50,
                                                   allow_unlabeled=True,
                                                   sparse=False,
                                                   return_indicator=True,
                                                   return_distributions=False,
                                                   random_state=1)
            X_train = X[:100, :]
            Y_train = Y[:100, :]
            X_test = X[101:, :]
            Y_test = Y[101:, ]

            config = cs.sample_configuration()
            config._populate_values()

            if 'classifier:passive_aggressive:n_iter' in config:
                config._values['classifier:passive_aggressive:n_iter'] = 5
            if 'classifier:sgd:n_iter' in config:
                config._values['classifier:sgd:n_iter'] = 5

            cls = ParamSklearnClassifier(config, random_state=1)
            print(config)
            try:
                cls.fit(X_train, Y_train)
                X_test_ = X_test.copy()
                predictions = cls.predict(X_test)
                self.assertIsInstance(predictions, np.ndarray)
                predicted_probabilities = cls.predict_proba(X_test_)
                [
                    self.assertIsInstance(i, np.ndarray)
                    for i in predicted_probabilities
                ]
            except ValueError as e:
                if "Floating-point under-/overflow occurred at epoch" in \
                        e.args[0] or \
                        "removed all features" in e.args[0] or \
                        "all features are discarded" in e.args[0]:
                    continue
                else:
                    print(config)
                    print(traceback.format_exc())
                    raise e
            except RuntimeWarning as e:
                if "invalid value encountered in sqrt" in e.args[0]:
                    continue
                elif "divide by zero encountered in" in e.args[0]:
                    continue
                elif "invalid value encountered in divide" in e.args[0]:
                    continue
                elif "invalid value encountered in true_divide" in e.args[0]:
                    continue
                else:
                    print(config)
                    print(traceback.format_exc())
                    raise e
            except UserWarning as e:
                if "FastICA did not converge" in e.args[0]:
                    continue
                else:
                    print(config)
                    print(traceback.format_exc())
                    raise e
            except MemoryError as e:
                continue