for scenario in scenarios:
        for seed in seeds:
            command = [
                        "python", "ppo_main_nlp.py",
                        "--scenario",scenario,
                        "--rep-type","nlp",
                        "--seed",str(seed),
                        "--env-name","doom",
                        "--button_number",str(button_number),
                        "--algo","ppo",
                        "--lr",str(lr),
                        "--value-loss-coef",str(value_loss_coef),
                        "--num-processes",str(num_processes),
                        "--num-env-steps",str(num_env_steps),
                        "--num-steps",str(num_steps),
                        "--num-mini-batch",str(num_mini_batch),
                        "--log-interval",str(1),
                        "--entropy-coef",str(0.01),
                        "--n-channels",str(1),
                        "--n-patches",str(5)
                       ]
            p = subprocess.Popen(command,shell=False)
            processes.append(p)
        for p in processes:
            p.wait()


    for scenario in scenarios:
        final_plot(scenario, num_updates, len(seeds))
        "defend_the_center_extreme", "health_gathering_extreme"
    ]

    seeds = [35, 45, 59, 12, 5]
    processes = []

    steps_per_epoch = 500
    epochs = 100

    frame_repeat = 4

    for scenario in scenarios:
        for seed in seeds:
            command = [
                "python", "dqn_nlp.py", "--SCENARIO", scenario, "--REP_TYPE",
                "nlp", "--SEED",
                str(seed), "--BATCH_SIZE", "100", "--ARCH", "TextCNN",
                "--SENTANCE_LEN", "200", "--LEARNING_STEPS_PER_EPOCH",
                str(steps_per_epoch), "--HIDDEN_UNITS", "16", "--FILTER_COUNT",
                "12", "--LEARNING_RATE", "0.00025", "--EPOCHS",
                str(epochs), "--FRAME_REPEAT",
                str(frame_repeat)
            ]
            p = subprocess.Popen(command, shell=False)
            processes.append(p)
        for p in processes:
            p.wait()

    for scenario in scenarios:
        final_plot(scenario, steps_per_epoch, len(seeds))