示例#1
0
def find_best_perf(alg, exp, auc_or_final, sp):
    exp_attrs = EXP_ATTRS[exp](exp)
    fp_list, _, tp_list, fop_list, res_path = make_params(alg, exp)
    best_params = {}
    best_perf, best_fp, best_sp, best_tp, best_fop = np.inf, np.inf, np.inf, np.inf, np.inf
    for fop in fop_list:
        for tp in tp_list:
            current_params = make_current_params(alg, sp, tp, fop)
            load_name = os.path.join(
                res_path,
                create_name_for_save_load(current_params,
                                          excluded_params=['alpha']) +
                f'_mean_{auc_or_final}_over_alpha.npy')
            current_perf = load_and_replace_large_nan_inf(
                load_name,
                large=exp_attrs.learning_starting_point,
                replace_with=exp_attrs.over_limit_replacement)
            min_perf = min(current_perf)
            if min_perf < best_perf:
                best_perf = min_perf
                best_perf_idx = int(np.nanargmin(current_perf))
                best_fp = fp_list[best_perf_idx]
                best_params = current_params
                best_params['alpha'] = best_fp
    return best_params
示例#2
0
def load_all_performances(alg, exp, auc_or_final, sp, exp_attrs):
    fp_list, sp_list, tp_list, fop_list, res_path = make_params(alg, exp)
    all_performance = np.zeros((len(fp_list), len(tp_list), len(fop_list)))
    for i, fop in enumerate(fop_list):
        for j, tp in enumerate(tp_list):
            current_params = make_current_params(alg, sp, tp, fop)
            load_file_name = os.path.join(
                res_path,
                create_name_for_save_load(current_params,
                                          excluded_params=['alpha']) +
                f'_mean_{auc_or_final}_over_alpha.npy')

            if RERUN:
                load_file_name_rerun = load_file_name.replace(
                    '.npy', f"{RERUN_POSTFIX}.npy")
                if os.path.exists(load_file_name):
                    load_file_name = load_file_name_rerun

            performance = np.load(load_file_name)
            performance = replace_large_nan_inf(
                performance,
                large=exp_attrs.learning_starting_point,
                replace_with=exp_attrs.over_limit_waterfall)
            all_performance[:, j, i] = performance
    return all_performance
示例#3
0
def save_perf_over_alpha(alg, exp, auc_or_final, sp, rerun=False):
    fp_list, sp_list, tp_list, fop_list, _ = make_params(alg, exp)
    res_path = make_res_path(alg, exp)
    mean_over_alpha, stderr_over_alpha = np.zeros(len(fp_list)), np.zeros(
        len(fp_list))
    best_fp, best_tp, best_fop = load_best_rerun_params(
        alg, exp, auc_or_final, sp) if rerun else (0, 0, 0)
    for tp in tp_list:
        for fop in fop_list:
            current_params = make_current_params(alg, sp, tp, fop)
            for i, fp in enumerate(fp_list):
                current_params['alpha'] = fp
                load_name = os.path.join(
                    res_path, create_name_for_save_load(current_params))
                perf = np.load(f"{load_name}_mean_stderr_{auc_or_final}.npy")
                if rerun and fp == best_fp and tp == best_tp and fop == best_fop:
                    perf = np.load(
                        f"{load_name}_mean_stderr_{auc_or_final}_rerun.npy")

                mean_over_alpha[i], stderr_over_alpha[i] = perf[0], perf[1]

            save_name = os.path.join(
                res_path,
                create_name_for_save_load(current_params,
                                          excluded_params=['alpha']))
            postfix = ''
            if rerun and tp == best_tp and fop == best_fop:
                postfix = '_rerun'
            np.save(f"{save_name}_mean_{auc_or_final}_over_alpha{postfix}",
                    mean_over_alpha)
            np.save(f"{save_name}_stderr_{auc_or_final}_over_alpha{postfix}",
                    stderr_over_alpha)
示例#4
0
def plot_all_sensitivities_per_alg():
    for exp in EXPS:
        exp_attrs = EXP_ATTRS[exp](exp)
        for auc_or_final in AUC_AND_FINAL:
            for sp in LMBDA_AND_ZETA:
                for alg in SELECTED_ALGS:
                    save_dir = os.path.join('pdf_plots', 'AllThirds', exp,
                                            f'Lmbda{sp}_{auc_or_final}')
                    fig, ax = plt.subplots()
                    fp_list, sp_list, tp_list, fop_list, _ = make_params(
                        alg, exp)
                    for tp in tp_list:
                        for fop in fop_list:
                            current_params = make_current_params(
                                alg, sp, tp, fop)
                            alphas = get_alphas(alg, exp)
                            performance, stderr = load_performance_over_alpha(
                                alg, exp, current_params, auc_or_final,
                                exp_attrs)
                            plot_sensitivity(ax, alg, exp, alphas, tp,
                                             performance, stderr, exp_attrs)
                    if not os.path.exists(save_dir):
                        os.makedirs(save_dir, exist_ok=True)
                    fig.savefig(os.path.join(save_dir,
                                             f"sensitivity_{alg}_{exp}.pdf"),
                                format='pdf',
                                dpi=1000,
                                bbox_inches='tight')
                    plt.show()
                    print(exp, alg, auc_or_final, sp)
示例#5
0
def save_best_perf_in_json(alg, exp, best_params, auc_or_final, sp):
    fp_list, _, tp_list, fop_list, res_path = make_params(alg, exp)
    exp_path = res_path.replace('Results', 'Experiments')
    json_exp = os.path.join(exp_path, f"{alg}.json")
    with open(json_exp, 'r') as f:
        json_exp = json.load(f)
    json_exp['meta_parameters'] = best_params
    save_name = os.path.join(res_path, f"{auc_or_final}_{sp}.json")
    with open(save_name, 'wt') as f:
        json.dump(json_exp, f, indent=4)