from PlottingFunctions import plot_single_resolution from PlottingFunctions import plot_energy_slices from PlottingFunctions import plot_distributions plot_single_resolution(Y_energy[energy_cc],reco_energy[energy_cc],bins=100, use_fraction=fractional,\ save=True,savefolder=save_folder_name,\ variable="Energy", units = "GeV") plot_single_resolution(Y_coszenith[energy_cc],reco_coszenith[energy_cc],bins=100, use_fraction=fractional,\ save=True,savefolder=save_folder_name,\ variable="CosZenith", units = "") plot_energy_slices(Y_energy[energy_cc], reco_energy[energy_cc], \ use_fraction = fractional, \ bins=10,min_val=5.,max_val=100.,\ save=True,savefolder=save_folder_name) plot_energy_slices(Y_coszenith[energy_cc], reco_coszenith[energy_cc], \ use_fraction = fractional, bins=10,min_val=-1.,max_val=1.,\ save=True,savefolder=save_folder_name,\ variable="CosZenith",units="") plot_distributions(Y_energy[energy_cc], reco_energy[energy_cc],\ save=True,savefolder=save_folder_name,\ variable="Energy",units="GeV") plot_distributions(Y_coszenith[energy_cc], reco_coszenith[energy_cc],\ save=True,savefolder=save_folder_name,\ variable="CozZenith",units="")
weights=weights2_value,alpha=0.5) plt.xscale('log') plt.title("Energy Distribution Weighted for %s events"%len(true2_value),fontsize=25) plt.xlabel("Energy (GeV)",fontsize=20) plt.xticks(fontsize=15) plt.yticks(fontsize=15) plt.axvline(5,linewidth=3,linestyle="--",color='k',label="Cut at 5 GeV") plt.legend(loc='upper left',fontsize=15) plt.savefig("%s/%sLogEnergyDist_ZoomInLE.png"%(save_folder_name,name2.replace(" ",""))) """ if make_distributions: plot_distributions(true1_value_fullAnalysis, reco1_value_fullAnalysis, weights=weights1_value_fullAnalysis, save=save, savefolder=save_folder_name, cnn_name = name1, variable=plot_name, units= plot_units, minval=minval,maxval=maxval, bins=bins,true_name=energy_type) if input_file2 is not None: plot_distributions(true2_value_fullAnalysis, old_reco=reco2_value_fullAnalysis, weights=weights2_value_fullAnalysis, save=save, savefolder=save_folder_name, reco_name = name2, variable=plot_name, units= plot_units, minval=minval,maxval=maxval, bins=bins,true_name=energy_type) if make_2d_hist:
old_reco = retro_energy[cuts],\ use_fraction = True, bins=syst_bin, min_val=minval, max_val=maxval,\ save=save, savefolder=save_folder_name,\ variable=plot_name, units=plot_units, reco_name="Retro") plot_vertex(true_r[cuts],true_z[cuts]) plot_bin_slices(true_energy[cuts], cnn_energy[cuts], old_reco = retro_energy[cuts],\ weights=weights[cuts],energy_truth=true_r[cuts],\ xvariable="Starting Vertex R Position",xunits="(m)", use_fraction = True, bins=syst_bin, min_val=0, max_val=maxval*3,\ save=save, savefolder=save_folder_name,\ variable=plot_name, units=plot_units, reco_name="Retro") """ """ plot_distributions(true_energy,cnn_energy,save=save,savefolder=save_folder_name,old_reco=retro_energy) plot_distributions(true_energy,cnn_energy,save=save,savefolder=save_folder_name,old_reco=retro_energy,minval=1,maxval=150,bins=150) plot_2D_prediction(true_energy, cnn_energy, save, save_folder_name,bins=bins,\ minval=minval, maxval=maxval, cut_truth=True, axis_square=True,\ variable=plot_name, units=plot_units, reco_name="CNN") plot_2D_prediction(true_energy, retro_energy, save, save_folder_name,bins=bins,\ minval=minval, maxval=maxval, cut_truth=True, axis_square=True,\ variable=plot_name, units=plot_units, reco_name="Retro") plot_single_resolution(true_energy, cnn_energy, use_old_reco = True, old_reco = retro_energy,\ minaxis=-maxval, maxaxis=maxval, bins=bins,\ save=save, savefolder=save_folder_name,\ variable=plot_name, units=plot_units, reco_name="Retro") plot_bin_slices(true_energy, cnn_energy, old_reco = retro_energy,\ use_fraction = True, bins=15, min_val=minval, max_val=maxval,\ save=save, savefolder=save_folder_name,\
#print(plot_name, plot_units, minval, maxval, syst_bin, bins) #print(max(true_val), max(cnn_val), max(retro_val)) #print(true_val[:10], cnn_val[:10], retro_val[:10]) if nu_type == "NuMu" or nu_type == "numu": dist_title = r'$\nu_\mu$ ' elif nu_type == "NuE" or nu_type == "nue": dist_title = r'for $\nu_e$ ' else: dist_title += nu_type dist_title += sample_name if plot_main: plot_distributions(true_val, cnn_val, old_reco=retro_val,old_reco_weights=retro_weights,\ save=save, savefolder=save_folder_name, weights=true_weights,\ reco_name = reco_name, variable=plot_name, units= plot_units, minval=minval,maxval=maxval,bins=bins) plot_distributions(true_val, cnn_val, old_reco=retro_val,old_reco_weights=retro_weights,\ save=save, savefolder=save_folder_name, weights=true_weights,\ reco_name = reco_name, variable=plot_name, units= plot_units, minval=min(true_val), maxval=max(true_val)) if plot_others: plot_distributions(true_r[cuts], reco_r[cuts],\ save=save, savefolder=save_folder_name, weights=true_weights,\ cnn_name = reco_name, variable="Radial Vertex", units= "(m)",log=True) plot_distributions(true_z[cuts], reco_z[cuts],\ save=save, savefolder=save_folder_name, weights=true_weights,cnn_name = reco_name,
else: weights_plot = weights[cuts] print("Working on %s"%folder_name) save_folder_name = save_base_name + "/%s/"%folder_name if os.path.isdir(save_folder_name) != True: os.mkdir(save_folder_name) print(truth[:10], cnn[:10]) #plot_NDOMS(true_ndoms[cuts],true_r[cuts]) #plot_NDOMS(true_ndoms[cuts],true_r[cuts],cut=0) plot_distributions(truth, cnn, old_reco=old_reco,\ save=save, savefolder=save_folder_name, weights=weights_plot,\ reco_name = "Retro", variable=plot_name, units= plot_units, minval=minval,maxval=maxval,bins=bins) plot_distributions(truth, cnn, old_reco=old_reco,\ save=save, savefolder=save_folder_name, weights=weights_plot,\ reco_name = "Retro", variable=plot_name, units= plot_units) if reco is not None: plot_distributions(true_r[cuts], reco_r[cuts],\ save=save, savefolder=save_folder_name, weights=weights_plot,\ cnn_name = "Retro", variable="Radial Vertex", units= "(m)",log=True) plot_distributions(true_z[cuts], reco_z[cuts],\ save=save, savefolder=save_folder_name, weights=weights_plot,\ cnn_name = "Retro", variable="Z Vertex", units= "(m)",log=True) plot_2D_prediction(truth, cnn,weights=weights_plot,\ save=save, savefolder=save_folder_name,bins=bins, variable=plot_name, units=plot_units, reco_name="CNN")
else: reco_class = retro_PID_full print("Working on %s" % folder_name) save_folder_name = save_base_name + "/%s/" % folder_name if os.path.isdir(save_folder_name) != True: os.mkdir(save_folder_name) print(true_energy[cuts][:10], cnn_energy[cuts][:10]) #plot_NDOMS(true_ndoms[cuts],true_r[cuts]) #plot_NDOMS(true_ndoms[cuts],true_r[cuts],cut=0) plot_distributions(true_energy[cuts], cnn_energy[cuts], old_reco=retro_energy[cuts],\ save=save, savefolder=save_folder_name, weights=true_weights,\ reco_name = "Retro", variable=plot_name, units= plot_units, minval=minval,maxval=maxval,bins=bins) #plot_distributions(true_energy[cuts], cnn_energy[cuts], old_reco=retro_energy[cuts],\ # save=save, savefolder=save_folder_name, weights=true_weights,\ # reco_name = "Retro", variable=plot_name, units= plot_units) #plot_distributions(true_r[cuts], reco_r[cuts],\ # save=save, savefolder=save_folder_name, weights=true_weights,\ # cnn_name = "Retro", variable="Radial Vertex", units= "(m)",log=True) plot_distributions(true_z[cuts], reco_z[cuts],\ save=save, savefolder=save_folder_name, weights=true_weights,\ cnn_name = "Retro", variable="Z Vertex", units= "(m)",log=True) switch = False plot_2D_prediction(true_energy[cuts], cnn_energy[cuts],weights=true_weights,\ save=save, savefolder=save_folder_name,bins=bins, switch_axis=switch, variable=plot_name, units=plot_units, reco_name="CNN") plot_2D_prediction(true_energy[cuts], retro_energy[cuts], weights=true_weights,
plot_2D_prediction(Y_test_use[:,true_index]*maxabs_factor,\ Y_test_predicted[:,NN_index]*maxabs_factor,\ save,save_folder_name,bins=bins,\ minval=minval,maxval=maxval,\ variable=plot_name,units=plot_units) plot_2D_prediction(Y_test_use[:,true_index]*maxabs_factor, Y_test_predicted[:,NN_index]*maxabs_factor,\ save,save_folder_name,bins=bins,\ minval=None,maxval=None,\ variable=plot_name,units=plot_units) plot_single_resolution(Y_test_use[:,true_index]*maxabs_factor,\ Y_test_predicted[:,NN_index]*maxabs_factor,\ minaxis=-2*maxval,maxaxis=maxval*2, save=save,savefolder=save_folder_name,\ variable=plot_name,units=plot_units) plot_distributions(Y_test_use[:,true_index]*maxabs_factor, Y_test_predicted[:,NN_index]*maxabs_factor,\ save,save_folder_name,\ variable=plot_name,units=plot_units) plot_bin_slices(Y_test_use[:,true_index]*maxabs_factor, Y_test_predicted[:,NN_index]*maxabs_factor,\ use_fraction = use_frac,\ bins=10,min_val=minval,max_val=maxval,\ save=True,savefolder=save_folder_name,\ variable=plot_name,units=plot_units) if first_var == "energy" and num ==0: plot_2D_prediction_fraction(Y_test_use[:,true_index]*maxabs_factor,\ Y_test_predicted[:,NN_index]*maxabs_factor,\ save,save_folder_name,bins=bins,\ minval=0,maxval=2,\ variable=plot_name,units=plot_units) if num > 0 or first_var == "zenith": plot_bin_slices(Y_test_use[:,true_index], Y_test_predicted[:,NN_index], \ min_energy = min_energy, max_energy=max_energy, true_energy=Y_test_use[:,0]*max_energy, \