fontsize=10) #Plot the data #Points not used for the treatment # d.TextPlotter(x_outbound, unumpy.nominal_values(y_outbound), EmLine_outBound, x_pad = 0.95, y_pad = 1) dz.text_plot(EmLine_outBound, x_outbound, unumpy.nominal_values(y_outbound), fontsize=10) #--Blue arm # dz.data_plot(x_Blue, unumpy.nominal_values(y_Blue), 'Blue arm', pv.Color_Vector[2][2], YError=unumpy.std_devs(y_Blue)) # dz.data_plot(x_Blue, unumpy.nominal_values(cHbeta_blue_MagEr * x_Blue + n_blue_MagEr), label='Trend line blue', linestyle=':') # #--Red arm #Increase the display range # dz.Axis.set_ylim(-0.4,0.4) #Insert labels and legends Title = "HII galaxy " + CodeName + " " + r'$c(H\beta)$' + ' coefficient calculation' y_Title = r'$log(I/I_{H\beta})_{th}-log(F/F_{H\beta})_{Obs}$' x_Title = r'$f(\lambda)-f(\lambda_{H\beta})$' dz.FigWording(x_Title, y_Title, Title) #Save data # pv.SaveManager(SavingName = pv.ScriptCode + '_' + CodeName + '_IntrinsicReddening', SavingFolder = FileFolder, ForceSave=True) # dz.display_fig() dz.savefig( '/home/vital/Dropbox/Astrophysics/Papers/Elemental_RegressionsSulfur/Images/' + 'SHOC579_cHbeta') print 'All data treated', pv.display_errors()
# dz.Axis.set_xscale('log') dz.Axis.tick_params(axis='both', labelsize=20.0) dz.Axis.set_ylim(0.0, 2.5) # dz.Axis.patch.set_facecolor('white') # dz.Fig.set_facecolor('black') # dz.Fig.set_edgecolor('black') #Plot wording xtitle = r'$n_{e}$ $(cm^{-3})$' # ytitle = r'j(T) [erg cm$^{-3}$ s${-1}$]' ytitle = 'Relative emissivity' title = 'HeI emissivities @ $T_e$={:.0f}'.format(tem) dz.FigWording(xtitle, ytitle, title, axis_Size=20.0, title_Size=20.0, legend_size=20.0) #Display figure # dz.display_fig() dz.savefig( '/home/vital/Dropbox/Astrophysics/Lore/PopStar_SEDs/SIV_Emissivity_den', extension='.png', reset_fig=True) #--------------------------Temperature case---------------------------------- #Plot the lines for line in S_Lines: y = S4.getEmissivity(tem_range, den, wave=line) y_1000_100 = S4.getEmissivity(tem, den, wave=line)
#----------------------Plotting abundances #Perform linear regression zero_vector = zeros(len(list_xvalues_clean_greater)) m ,n, m_err, n_err, covab = bces(list_xvalues_clean_greater, zero_vector, list_yvalues_clean_greater, zero_vector, zero_vector) x_regresion = linspace(0, max(list_xvalues_clean_greater), 50) y_regression = m[0] * x_regresion + n[0] LinearRegression_Label = r'Linear fitting'.format(n = round(n[0],2) ,nerr = round(n_err[0],2)) dz.data_plot(x_regresion, y_regression, label=LinearRegression_Label, linestyle='--', color=dz.ColorVector[1]) logSII_SIII_theo = m[0] * logArII_ArIII + n[0] dz.data_plot(nominal_values(logArII_ArIII), nominal_values(logSII_SIII_theo), color=dz.ColorVector[1], label='Observations', markerstyle='o', x_error=std_devs(logArII_ArIII), y_error=std_devs(logSII_SIII_theo)) # #Plot fitting formula formula = r"$log\left(Ar^{{+2}}/Ar^{{+3}}\right) = {m} \cdot log\left(S^{{+2}}/S^{{+3}}\right) + {n}$".format(m='m', n='n') formula2 = r"$m = {m} \pm {merror}; n = {n} \pm {nerror}$".format(m=round(m[0],3), merror=round(m_err[0],3), n=round(n[0],3), nerror=round(n_err[0],3)) dz.Axis.text(0.50, 0.15, formula, transform=dz.Axis.transAxes, fontsize=20) dz.Axis.text(0.50, 0.08, formula2, transform=dz.Axis.transAxes, fontsize=20) #Plot wording xtitle = r'$log(S^{+2}/S^{+3})$' ytitle = r'$log(Ar^{+2}/Ar^{+3})$' title = 'Argon - Sulfur ionic relation in Cloudy photoionization models' dz.FigWording(xtitle, ytitle, title, axis_Size = 20.0, title_Size = 20.0, legend_size=20.0, legend_loc='best') #Display figure # dz.display_fig() dz.savefig(output_address = '/home/vital/Dropbox/Astrophysics/Papers/Elemental_RegressionsSulfur/Cloudy_Models/ArIons_vs_SIons_Ionization_Obs') print 'Data treated'
xtitle = r'$T[SIII] (K)$' ytitle = r'$log(Ar^{+2}/Ar^{+3})$' title = r'Argon ionic abundance versus $S^{+2}$ temperature in Cloudy models' print len(Temps), len(logArII_ArIII) dz.data_plot(nominal_values(Temps), nominal_values(logArII_ArIII), color=dz.ColorVector[1], label='Observations', markerstyle='o', x_error=std_devs(Temps), y_error=std_devs(logArII_ArIII)) dz.FigWording(xtitle, ytitle, title, axis_Size=20.0, title_Size=20.0, legend_size=20.0, legend_loc='upper right') 'ArIons_vs_TSIII_Obs' dz.Axis.set_xlim(5000, 20000) #Display figure # dz.display_fig() dz.savefig( output_address= '/home/vital/Dropbox/Astrophysics/Papers/Elemental_RegressionsSulfur/Cloudy_Models/ArIons_vs_TSIII_Obs' ) print 'Data treated'
# dz.InsertFigure(FileFolder, CodeName + '.png') arr_hand = read_png(FileFolder + CodeName + '.png') Image_Frame = OffsetImage(arr_hand, zoom=3) ab = AnnotationBbox(Image_Frame, [0.865, 0.8], xybox=(10, -10), xycoords='figure fraction', boxcoords="offset points") dz.Axis.add_artist(ab) dz.Axis.set_xlim(3600.0, 3900) dz.Axis.set_ylim(0, 1e-15) #Set plot labels title = r'SHOC579 spectrum components$' dz.FigWording(r'Wavelength $(\AA)$', 'Flux' + r'$(erg\,cm^{-2} s^{-1} \AA^{-1})$', title) #Display figure # dz.display_fig() dz.savefig( '/home/vital/Dropbox/Astrophysics/Papers/Elemental_RegressionsSulfur/Images/' + 'SHOC579_spectralComponents', extension='.png') # #---------------------Zanstra calibration------------------------------ # # pv = myPickle() # dz = Plot_Conf() # nebCalc = NebularContinuumCalculator() # nebCalc.DataRoot = '/home/vital/Dropbox/Astrophysics/Lore/NebularContinuum/' #
Lineal_parameters = lineal_mod.guess(y_linealFitting, x=x_linealFitting) x_lineal = linspace(0, np_max(x_linealFitting), 100) y_lineal = Lineal_parameters[ 'lineal_slope'].value * x_lineal + Lineal_parameters[ 'lineal_intercept'].value dz.data_plot(x_lineal, y_lineal, label='Linear fitting', color='black', linestyle='-') # #Plot fitting formula formula = r"$log\left(Ar^{{+2}}/Ar^{{+3}}\right) = {m} \cdot log\left(S^{{+2}}/S^{{+3}}\right) + {n}$".format( m=round(Lineal_parameters['lineal_slope'].value, 3), n=round(Lineal_parameters['lineal_intercept'].value, 3)) dz.Axis.text(0.35, 0.15, formula, transform=dz.Axis.transAxes, fontsize=20) #Plot wording xtitle = r'$log\left(S^{{+2}}/S^{{+3}}\right)$' ytitle = r'$log\left(Ar^{{+2}}/Ar^{{+3}}\right)$' title = 'Argon - Sulfur ionic abundances\nfor a Z, Mass, log(t) cluster grid' dz.FigWording(xtitle, ytitle, title, loc='upper left') #Display figure # dz.display_fig() dz.savefig( output_address= '/home/vital/Dropbox/Astrophysics/Data/WHT_observations/data/sulfur_argon_ionicAbundances', extension='.png') print 'Data treated otro'
dz.Axis.set_xlim(12, 22) dz.Axis.set_ylim(12, 22) dz.data_plot(x_values, y_values, color=dz.ColorVector[2][0], label='Candidate objects', markerstyle='o') dz.text_plot(names, x_values, y_values, color=dz.ColorVector[1], fontsize=11) dz.Axis.axhline(y=20, color=dz.ColorVector[2][1]) dz.Axis.axvline(x=19, color=dz.ColorVector[2][1]) Title = r'Sample SDSS model magnitudes' Title_X = r'r $(model)$' Title_Y = r'g $(model)$' dz.FigWording(Title_X, Title_Y, Title, legend_loc='best') dz.savefig(output_address=Catalogue_Dic['Data_Folder'] + 'g_r_magnitudes', reset_fig=True) #------Plot magnitudes x_values = array(Hbeta_values) y_values = array(Declination_values) dz.data_plot(x_values, y_values, color=dz.ColorVector[2][0], label='Candidate objects', markerstyle='o') dz.text_plot(names, x_values, y_values, color=dz.ColorVector[1], fontsize=11)