def get_model(point_cloud,
              is_training,
              num_class,
              sigma,
              bn_decay=None,
              weight_decay=None):
    """ Semantic segmentation PointNet, input is BxNx3, output Bxnum_class """

    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    end_points = {}
    l0_xyz = point_cloud
    l0_points = point_cloud

    # Feature encoding layers
    l1_xyz, l1_points = feature_encoding_layer(l0_xyz,
                                               l0_points,
                                               npoint=1024,
                                               radius=0.1,
                                               sigma=sigma,
                                               K=32,
                                               mlp=[32, 32, 64],
                                               is_training=is_training,
                                               bn_decay=bn_decay,
                                               weight_decay=weight_decay,
                                               scope='layer1')
    l2_xyz, l2_points = feature_encoding_layer(l1_xyz,
                                               l1_points,
                                               npoint=256,
                                               radius=0.2,
                                               sigma=2 * sigma,
                                               K=32,
                                               mlp=[64, 64, 128],
                                               is_training=is_training,
                                               bn_decay=bn_decay,
                                               weight_decay=weight_decay,
                                               scope='layer2')
    l3_xyz, l3_points = feature_encoding_layer(l2_xyz,
                                               l2_points,
                                               npoint=64,
                                               radius=0.4,
                                               sigma=4 * sigma,
                                               K=32,
                                               mlp=[128, 128, 256],
                                               is_training=is_training,
                                               bn_decay=bn_decay,
                                               weight_decay=weight_decay,
                                               scope='layer3')
    l4_xyz, l4_points = feature_encoding_layer(l3_xyz,
                                               l3_points,
                                               npoint=36,
                                               radius=0.8,
                                               sigma=8 * sigma,
                                               K=32,
                                               mlp=[256, 256, 512],
                                               is_training=is_training,
                                               bn_decay=bn_decay,
                                               weight_decay=weight_decay,
                                               scope='layer4')

    # Feature decoding layers
    l3_points = feature_decoding_layer(l3_xyz,
                                       l4_xyz,
                                       l3_points,
                                       l4_points,
                                       0.8,
                                       8 * sigma,
                                       16, [512, 512],
                                       is_training,
                                       bn_decay,
                                       weight_decay,
                                       scope='fa_layer1')
    l2_points = feature_decoding_layer(l2_xyz,
                                       l3_xyz,
                                       l2_points,
                                       l3_points,
                                       0.4,
                                       4 * sigma,
                                       16, [256, 256],
                                       is_training,
                                       bn_decay,
                                       weight_decay,
                                       scope='fa_layer2')
    l1_points = feature_decoding_layer(l1_xyz,
                                       l2_xyz,
                                       l1_points,
                                       l2_points,
                                       0.2,
                                       2 * sigma,
                                       16, [256, 128],
                                       is_training,
                                       bn_decay,
                                       weight_decay,
                                       scope='fa_layer3')
    l0_points = feature_decoding_layer(l0_xyz,
                                       l1_xyz,
                                       l0_points,
                                       l1_points,
                                       0.1,
                                       sigma,
                                       16, [128, 128, 128],
                                       is_training,
                                       bn_decay,
                                       weight_decay,
                                       scope='fa_layer4')

    # FC layers
    net = tf_util.conv1d(l0_points,
                         128,
                         1,
                         padding='VALID',
                         bn=True,
                         is_training=is_training,
                         scope='fc1',
                         bn_decay=bn_decay,
                         weight_decay=weight_decay)
    end_points['feats'] = net
    net = tf_util.dropout(net,
                          keep_prob=0.5,
                          is_training=is_training,
                          scope='dp1')
    net = tf_util.conv1d(net,
                         num_class,
                         1,
                         padding='VALID',
                         activation_fn=None,
                         weight_decay=weight_decay,
                         scope='fc2')

    return net, end_points
def get_embedding_model(points, is_training, bn_decay, batch_size=1):

    # Get inputs from our features map.
    l0_xyz = tf.reshape(points, shape=(batch_size, -1, 3))
    l0_points = None

    with tf.variable_scope('encoder'):

        # Encode w/ PointConv Layers.
        l1_xyz, l1_points = feature_encoding_layer(l0_xyz,
                                                   l0_xyz,
                                                   npoint=512,
                                                   radius=0.1,
                                                   sigma=0.05,
                                                   K=32,
                                                   mlp=[32, 32, 64],
                                                   is_training=is_training,
                                                   bn_decay=bn_decay,
                                                   weight_decay=None,
                                                   scope='layer1')
        l2_xyz, l2_points = feature_encoding_layer(l1_xyz,
                                                   l1_points,
                                                   npoint=256,
                                                   radius=0.2,
                                                   sigma=0.1,
                                                   K=32,
                                                   mlp=[64, 64, 64],
                                                   is_training=is_training,
                                                   bn_decay=bn_decay,
                                                   weight_decay=None,
                                                   scope='layer2')
        l3_xyz, l3_points = feature_encoding_layer(l2_xyz,
                                                   l2_points,
                                                   npoint=64,
                                                   radius=0.4,
                                                   sigma=0.2,
                                                   K=32,
                                                   mlp=[128, 128, 256],
                                                   is_training=is_training,
                                                   bn_decay=bn_decay,
                                                   weight_decay=None,
                                                   scope='layer3')
        l4_xyz, l4_points = feature_encoding_layer(l3_xyz,
                                                   l3_points,
                                                   npoint=36,
                                                   radius=0.8,
                                                   sigma=0.4,
                                                   K=32,
                                                   mlp=[256, 256, 512],
                                                   is_training=is_training,
                                                   bn_decay=bn_decay,
                                                   weight_decay=None,
                                                   scope='layer4')

        # Fully connected layers
        embedding = tf.reshape(l4_points, [batch_size, -1])

        # Encode to a 256 large embedding vector.
        cloud_embedding = tf.compat.v1.layers.Dense(256)(embedding)
        cloud_embedding = tf.compat.v1.layers.batch_normalization(
            cloud_embedding, training=is_training)
        cloud_embedding = tf.nn.relu(cloud_embedding)

    return cloud_embedding
def get_pointconv_model(points,
                        xyz,
                        sdf_label,
                        is_training,
                        bn_decay,
                        batch_size=32,
                        loss_feature='loss'):
    '''
    Given features and label return prediction, loss ops.
    '''

    # Get inputs from our features map.
    l0_xyz = tf.reshape(points, shape=(batch_size, -1, 3))
    l0_points = None
    xyz_in = tf.reshape(xyz, shape=(batch_size, -1, 3))
    sdf_label = tf.reshape(sdf_label,
                           shape=(batch_size, -1, 1))  # This is important.

    with tf.compat.v1.variable_scope('points_embedding'):

        # Embed our input points to some 256 vector.
        l1_pts = tf.compat.v1.layers.Dense(512,
                                           activation=tf.nn.relu,
                                           use_bias=True)(xyz_in)
        l1_pts = tf.layers.dropout(l1_pts, rate=0.2, training=is_training)

        pts_embedding = tf.compat.v1.layers.Dense(256,
                                                  activation=tf.nn.relu,
                                                  use_bias=True)(l1_pts)
        pts_embedding = tf.layers.dropout(pts_embedding,
                                          rate=0.2,
                                          training=is_training)

    with tf.compat.v1.variable_scope('encoder'):

        # Encode w/ PointConv Layers.
        l1_xyz, l1_points = feature_encoding_layer(l0_xyz,
                                                   l0_xyz,
                                                   npoint=512,
                                                   radius=0.1,
                                                   sigma=0.05,
                                                   K=32,
                                                   mlp=[32, 32, 64],
                                                   is_training=is_training,
                                                   bn_decay=bn_decay,
                                                   weight_decay=None,
                                                   scope='layer1')
        l2_xyz, l2_points = feature_encoding_layer(l1_xyz,
                                                   l1_points,
                                                   npoint=256,
                                                   radius=0.2,
                                                   sigma=0.1,
                                                   K=32,
                                                   mlp=[64, 64, 64],
                                                   is_training=is_training,
                                                   bn_decay=bn_decay,
                                                   weight_decay=None,
                                                   scope='layer2')
        l3_xyz, l3_points = feature_encoding_layer(l2_xyz,
                                                   l2_points,
                                                   npoint=64,
                                                   radius=0.4,
                                                   sigma=0.2,
                                                   K=32,
                                                   mlp=[128, 128, 256],
                                                   is_training=is_training,
                                                   bn_decay=bn_decay,
                                                   weight_decay=None,
                                                   scope='layer3')
        l4_xyz, l4_points = feature_encoding_layer(l3_xyz,
                                                   l3_points,
                                                   npoint=36,
                                                   radius=0.8,
                                                   sigma=0.4,
                                                   K=32,
                                                   mlp=[256, 256, 512],
                                                   is_training=is_training,
                                                   bn_decay=bn_decay,
                                                   weight_decay=None,
                                                   scope='layer4')

        # Fully connected layers
        embedding = tf.reshape(l4_points, [batch_size, -1])

        # Encode to a 256 large embedding vector.
        cloud_embedding = tf.compat.v1.layers.Dense(256)(embedding)
        cloud_embedding = tf.compat.v1.layers.batch_normalization(
            cloud_embedding, training=is_training)
        # cloud_embedding = tf.keras.layers.batch_normalization(cloud_embedding, training=is_training)
        cloud_embedding = tf.nn.relu(cloud_embedding)

    with tf.compat.v1.variable_scope('sdf'):

        # Combine embeddings. First reshape cloud embeddings to concat with each pt embedding.
        cloud_embedding = tf.tile(tf.expand_dims(cloud_embedding, 1),
                                  [1, tf.shape(pts_embedding)[1], 1])
        embedded_inputs = tf.concat([pts_embedding, cloud_embedding], axis=2)

        # 8 Dense layers w/ ReLU non-linearities to predict SDF.
        l1_sdf = tf.compat.v1.layers.Dense(512, name='sdf_1')(embedded_inputs)
        l1_sdf_1 = tf.compat.v1.layers.batch_normalization(
            l1_sdf, training=is_training)
        l1_sdf_2 = tf.nn.relu(l1_sdf_1)

        l2_sdf = tf.compat.v1.layers.Dense(512, name='sdf_2')(l1_sdf_2)
        l2_sdf_1 = tf.compat.v1.layers.batch_normalization(
            l2_sdf, training=is_training)
        l2_sdf_2 = tf.nn.relu(l2_sdf_1)

        l3_sdf = tf.compat.v1.layers.Dense(256, name='sdf_3')(l2_sdf_2)
        l3_sdf_1 = tf.compat.v1.layers.batch_normalization(
            l3_sdf, training=is_training)
        l3_sdf_2 = tf.nn.relu(l3_sdf_1)

        # Feed our input embedding space back in here.
        l3_sdf_aug = tf.concat([l3_sdf_2, embedded_inputs], axis=2)
        l4_sdf = tf.compat.v1.layers.Dense(512, name='sdf_4')(l3_sdf_aug)
        l4_sdf_1 = tf.compat.v1.layers.batch_normalization(
            l4_sdf, training=is_training)
        l4_sdf_2 = tf.nn.relu(l4_sdf_1)

        l5_sdf = tf.compat.v1.layers.Dense(512, name='sdf_5')(l4_sdf_2)
        l5_sdf_1 = tf.compat.v1.layers.batch_normalization(
            l5_sdf, training=is_training)
        l5_sdf_2 = tf.nn.relu(l5_sdf_1)

        l6_sdf = tf.compat.v1.layers.Dense(512, name='sdf_6')(l5_sdf_2)
        l6_sdf_1 = tf.compat.v1.layers.batch_normalization(
            l6_sdf, training=is_training)
        l6_sdf_2 = tf.nn.relu(l6_sdf_1)

        l7_sdf = tf.compat.v1.layers.Dense(512, name='sdf_7')(l6_sdf_2)
        l7_sdf_1 = tf.compat.v1.layers.batch_normalization(
            l7_sdf, training=is_training)
        l7_sdf_2 = tf.nn.relu(l7_sdf_1)

        sdf_prediction = tf.compat.v1.layers.Dense(
            1, activation=tf.nn.tanh, use_bias=True,
            name='sdf_8')(l7_sdf_2)  # Last is tanh

    # Define the loss: clipped surface loss.
    # loss = tf.losses.absolute_difference(
    #     tf.clip_by_value(sdf_label, -0.1, 0.1),
    #     tf.clip_by_value(sdf_prediction, -0.1, 0.1))
    loss = tf.compat.v1.losses.mean_squared_error(sdf_label, sdf_prediction)
    tf.compat.v1.summary.scalar(loss_feature, loss)

    # Collect debug print statements as needed.
    debug = tf.no_op()

    return sdf_prediction, loss, debug
示例#4
0
def get_scene_model(point_cloud,
                    cls_label,
                    is_training,
                    bn_decay=None,
                    num_classes=50):
    point_cloud_with_norm = point_cloud
    point_cloud = point_cloud[:, :, 0:3]
    sigma = 0.05
    weight_decay = None
    num_class = num_classes
    """ Semantic segmentation PointNet, input is BxNx3, output Bxnum_class """

    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    end_points = {}
    l0_xyz = point_cloud
    l0_points = point_cloud_with_norm

    # Feature encoding layers
    l1_xyz, l1_points = feature_encoding_layer(l0_xyz,
                                               l0_points,
                                               npoint=512,
                                               radius=0.1,
                                               sigma=sigma,
                                               K=32,
                                               mlp=[32, 32, 64],
                                               is_training=is_training,
                                               bn_decay=bn_decay,
                                               weight_decay=weight_decay,
                                               scope='layer1')
    l2_xyz, l2_points = feature_encoding_layer(l1_xyz,
                                               l1_points,
                                               npoint=128,
                                               radius=0.2,
                                               sigma=2 * sigma,
                                               K=32,
                                               mlp=[64, 64, 128],
                                               is_training=is_training,
                                               bn_decay=bn_decay,
                                               weight_decay=weight_decay,
                                               scope='layer2')
    l3_xyz, l3_points = feature_encoding_layer(l2_xyz,
                                               l2_points,
                                               npoint=36,
                                               radius=0.4,
                                               sigma=4 * sigma,
                                               K=32,
                                               mlp=[128, 128, 256],
                                               is_training=is_training,
                                               bn_decay=bn_decay,
                                               weight_decay=weight_decay,
                                               scope='layer3')
    l4_xyz, l4_points = feature_encoding_layer(l3_xyz,
                                               l3_points,
                                               npoint=16,
                                               radius=0.8,
                                               sigma=8 * sigma,
                                               K=8,
                                               mlp=[256, 256, 512],
                                               is_training=is_training,
                                               bn_decay=bn_decay,
                                               weight_decay=weight_decay,
                                               scope='layer4')
    external_l5_xyz, external_l5_points = feature_encoding_layer(
        l4_xyz,
        l4_points,
        npoint=8,
        radius=1.6,
        sigma=8 * sigma,
        K=8,
        mlp=[512, 512, 512],
        is_training=is_training,
        bn_decay=bn_decay,
        weight_decay=weight_decay,
        scope='external_layer5')
    external_l6_scene_feature = tf.reduce_mean(external_l5_points,
                                               axis=1,
                                               keepdims=True)
    external_scene_feature = tf_util.dropout(external_l6_scene_feature,
                                             keep_prob=0.5,
                                             is_training=is_training,
                                             scope='external_dp')
    external_scene_feature = tf_util.conv1d(external_scene_feature,
                                            num_class,
                                            1,
                                            padding='VALID',
                                            activation_fn=None,
                                            weight_decay=weight_decay,
                                            scope='external_fc')

    # Feature decoding layers
    l3_points = feature_decoding_layer(l3_xyz,
                                       l4_xyz,
                                       l3_points,
                                       l4_points,
                                       0.8,
                                       8 * sigma,
                                       16, [512, 512],
                                       is_training,
                                       bn_decay,
                                       weight_decay,
                                       scope='fa_layer1')
    l2_points = feature_decoding_layer(l2_xyz,
                                       l3_xyz,
                                       l2_points,
                                       l3_points,
                                       0.4,
                                       4 * sigma,
                                       16, [256, 256],
                                       is_training,
                                       bn_decay,
                                       weight_decay,
                                       scope='fa_layer2')
    l1_points = feature_decoding_layer(l1_xyz,
                                       l2_xyz,
                                       l1_points,
                                       l2_points,
                                       0.2,
                                       2 * sigma,
                                       16, [256, 128],
                                       is_training,
                                       bn_decay,
                                       weight_decay,
                                       scope='fa_layer3')
    l0_points = feature_decoding_layer(l0_xyz,
                                       l1_xyz,
                                       l0_points,
                                       l1_points,
                                       0.1,
                                       sigma,
                                       16, [128, 128, 128],
                                       is_training,
                                       bn_decay,
                                       weight_decay,
                                       scope='fa_layer4')

    # print('l0', l0_points.shape)

    # end_points['feats'] = l0_points

    # FC layers
    net = tf_util.conv1d(l0_points,
                         128,
                         1,
                         padding='VALID',
                         bn=True,
                         is_training=is_training,
                         scope='fc1',
                         bn_decay=bn_decay,
                         weight_decay=weight_decay)
    end_points['feats'] = net
    net = tf_util.dropout(net,
                          keep_prob=0.5,
                          is_training=is_training,
                          scope='dp1')
    net = tf_util.conv1d(net,
                         num_class,
                         1,
                         padding='VALID',
                         activation_fn=None,
                         weight_decay=weight_decay,
                         scope='fc2')

    return net, end_points, external_scene_feature
示例#5
0
def get_scene_model(point_cloud,
                    is_training,
                    num_class,
                    sigma,
                    bn_decay=None,
                    weight_decay=None):
    """ Semantic segmentation PointNet, input is BxNx3, output Bxnum_class """

    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    end_points = {}
    l0_xyz = point_cloud
    l0_points = point_cloud

    # Feature encoding layers
    l1_xyz, l1_points = feature_encoding_layer(l0_xyz,
                                               l0_points,
                                               npoint=2048,
                                               radius=0.1,
                                               sigma=sigma,
                                               K=8,
                                               mlp=[32, 32, 32],
                                               is_training=is_training,
                                               bn_decay=bn_decay,
                                               weight_decay=weight_decay,
                                               scope='layer1')
    l1_xyz_1024, l1_points_1024 = feature_encoding_layer(
        l1_xyz,
        l1_points,
        npoint=1024,
        radius=0.1,
        sigma=sigma,
        K=8,
        mlp=[32, 32, 64],
        is_training=is_training,
        bn_decay=bn_decay,
        weight_decay=weight_decay,
        scope='layer1_1024')
    l1_xyz_512, l1_points_512 = feature_encoding_layer(
        l1_xyz_1024,
        l1_points_1024,
        npoint=512,
        radius=0.1,
        sigma=sigma,
        K=8,
        mlp=[64, 64, 64],
        is_training=is_training,
        bn_decay=bn_decay,
        weight_decay=weight_decay,
        scope='layer1_512')
    l2_xyz, l2_points = feature_encoding_layer(l1_xyz_512,
                                               l1_points_512,
                                               npoint=256,
                                               radius=0.2,
                                               sigma=2 * sigma,
                                               K=8,
                                               mlp=[64, 64, 128],
                                               is_training=is_training,
                                               bn_decay=bn_decay,
                                               weight_decay=weight_decay,
                                               scope='layer2')
    l2_xyz_128, l2_points_128 = feature_encoding_layer(
        l2_xyz,
        l2_points,
        npoint=128,
        radius=0.2,
        sigma=2 * sigma,
        K=8,
        mlp=[128, 128, 128],
        is_training=is_training,
        bn_decay=bn_decay,
        weight_decay=weight_decay,
        scope='layer2_128')
    l3_xyz, l3_points = feature_encoding_layer(l2_xyz_128,
                                               l2_points_128,
                                               npoint=64,
                                               radius=0.4,
                                               sigma=4 * sigma,
                                               K=8,
                                               mlp=[128, 128, 256],
                                               is_training=is_training,
                                               bn_decay=bn_decay,
                                               weight_decay=weight_decay,
                                               scope='layer3')
    l4_xyz, l4_points = feature_encoding_layer(l3_xyz,
                                               l3_points,
                                               npoint=36,
                                               radius=0.8,
                                               sigma=8 * sigma,
                                               K=8,
                                               mlp=[256, 256, 512],
                                               is_training=is_training,
                                               bn_decay=bn_decay,
                                               weight_decay=weight_decay,
                                               scope='layer4')

    external_l5_xyz, external_l5_points = feature_encoding_layer(
        l4_xyz,
        l4_points,
        npoint=8,
        radius=1.6,
        sigma=8 * sigma,
        K=8,
        mlp=[512, 512, 512],
        is_training=is_training,
        bn_decay=bn_decay,
        weight_decay=weight_decay,
        scope='external_layer5')
    external_l6_scene_feature = tf.reduce_mean(external_l5_points,
                                               axis=1,
                                               keepdims=True)
    external_scene_feature = tf_util.dropout(external_l6_scene_feature,
                                             keep_prob=0.5,
                                             is_training=is_training,
                                             scope='external_dp')
    external_scene_feature = tf_util.conv1d(external_scene_feature,
                                            num_class,
                                            1,
                                            padding='VALID',
                                            activation_fn=None,
                                            weight_decay=weight_decay,
                                            scope='external_fc')

    # Feature decoding layers
    l3_points = feature_decoding_layer(l3_xyz,
                                       l4_xyz,
                                       l3_points,
                                       l4_points,
                                       0.8,
                                       8 * sigma,
                                       8, [512, 512],
                                       is_training,
                                       bn_decay,
                                       weight_decay,
                                       scope='fa_layer1')
    l2_points_128 = feature_decoding_layer(l2_xyz_128,
                                           l3_xyz,
                                           l2_points_128,
                                           l3_points,
                                           0.4,
                                           4 * sigma,
                                           8, [256, 256],
                                           is_training,
                                           bn_decay,
                                           weight_decay,
                                           scope='fa_layer2_128')
    l2_points = feature_decoding_layer(l2_xyz,
                                       l2_xyz_128,
                                       l2_points,
                                       l2_points_128,
                                       0.4,
                                       4 * sigma,
                                       8, [256, 256],
                                       is_training,
                                       bn_decay,
                                       weight_decay,
                                       scope='fa_layer2')
    l1_points_512 = feature_decoding_layer(l1_xyz_512,
                                           l2_xyz,
                                           l1_points_512,
                                           l2_points,
                                           0.2,
                                           2 * sigma,
                                           8, [256, 256],
                                           is_training,
                                           bn_decay,
                                           weight_decay,
                                           scope='fa_layer3_512')
    l1_points_1024 = feature_decoding_layer(l1_xyz_1024,
                                            l1_xyz_512,
                                            l1_points_1024,
                                            l1_points_512,
                                            0.2,
                                            2 * sigma,
                                            8, [256, 256],
                                            is_training,
                                            bn_decay,
                                            weight_decay,
                                            scope='fa_layer3_1024')
    l1_points = feature_decoding_layer(l1_xyz,
                                       l1_xyz_1024,
                                       l1_points,
                                       l1_points_1024,
                                       0.2,
                                       2 * sigma,
                                       8, [256, 128],
                                       is_training,
                                       bn_decay,
                                       weight_decay,
                                       scope='fa_layer3')
    l0_points = feature_decoding_layer(l0_xyz,
                                       l1_xyz,
                                       l0_points,
                                       l1_points,
                                       0.1,
                                       sigma,
                                       8, [128, 128, 128],
                                       is_training,
                                       bn_decay,
                                       weight_decay,
                                       scope='fa_layer4')

    # FC layers
    net = tf_util.conv1d(l0_points,
                         128,
                         1,
                         padding='VALID',
                         bn=True,
                         is_training=is_training,
                         scope='fc1',
                         bn_decay=bn_decay,
                         weight_decay=weight_decay)
    end_points['feats'] = net
    net = tf_util.dropout(net,
                          keep_prob=0.5,
                          is_training=is_training,
                          scope='dp1')
    net = tf_util.conv1d(net,
                         num_class,
                         1,
                         padding='VALID',
                         activation_fn=None,
                         weight_decay=weight_decay,
                         scope='fc2')

    return net, end_points, external_scene_feature
示例#6
0
def get_model(boundary_label,
              point_cloud,
              is_training,
              num_class,
              sigma,
              bn_decay=None,
              weight_decay=None):
    """ Semantic segmentation PointNet, input is BxNx3, output Bxnum_class """
    boundary_label = tf.sigmoid(boundary_label)
    boundary_label = tf.stop_gradient(boundary_label)

    batch_size = point_cloud.get_shape()[0].value
    num_point = point_cloud.get_shape()[1].value
    end_points = {}
    l0_xyz = point_cloud[:, :, :3]
    l0_points = point_cloud[:, :, :3]

    # Feature encoding layers
    l1_xyz, l1_points, sub_boundary1 = feature_encoding_layer(
        l0_xyz,
        l0_points,
        npoint=1024,
        radius=0.1,
        sigma=sigma,
        K=32,
        mlp=[32, 32, 64],
        local_num_out_channel=3,
        is_training=is_training,
        bn_decay=bn_decay,
        weight_decay=weight_decay,
        scope='layer1',
        boundary_label=boundary_label)
    l2_xyz, l2_points, sub_boundary2 = feature_encoding_layer(
        l1_xyz,
        l1_points,
        npoint=256,
        radius=0.2,
        sigma=2 * sigma,
        K=32,
        mlp=[64, 64, 128],
        local_num_out_channel=32,
        is_training=is_training,
        bn_decay=bn_decay,
        weight_decay=weight_decay,
        scope='layer2',
        boundary_label=sub_boundary1)
    l3_xyz, l3_points, _ = feature_encoding_layer(l2_xyz,
                                                  l2_points,
                                                  npoint=64,
                                                  radius=0.4,
                                                  sigma=4 * sigma,
                                                  K=32,
                                                  mlp=[128, 128, 256],
                                                  local_num_out_channel=64,
                                                  is_training=is_training,
                                                  bn_decay=bn_decay,
                                                  weight_decay=weight_decay,
                                                  scope='layer3')
    l4_xyz, l4_points, _ = feature_encoding_layer(l3_xyz,
                                                  l3_points,
                                                  npoint=36,
                                                  radius=0.8,
                                                  sigma=8 * sigma,
                                                  K=32,
                                                  mlp=[256, 256, 512],
                                                  local_num_out_channel=128,
                                                  is_training=is_training,
                                                  bn_decay=bn_decay,
                                                  weight_decay=weight_decay,
                                                  scope='layer4')

    # Feature decoding layers
    l3_points = feature_decoding_layer(l3_xyz,
                                       l4_xyz,
                                       l3_points,
                                       l4_points,
                                       0.8,
                                       8 * sigma,
                                       16, [512, 512],
                                       is_training,
                                       bn_decay,
                                       weight_decay,
                                       scope='fa_layer1')
    l2_points = feature_decoding_layer(l2_xyz,
                                       l3_xyz,
                                       l2_points,
                                       l3_points,
                                       0.4,
                                       4 * sigma,
                                       16, [256, 256],
                                       is_training,
                                       bn_decay,
                                       weight_decay,
                                       scope='fa_layer2')
    l1_points = feature_decoding_layer(l1_xyz,
                                       l2_xyz,
                                       l1_points,
                                       l2_points,
                                       0.2,
                                       2 * sigma,
                                       16, [256, 128],
                                       is_training,
                                       bn_decay,
                                       weight_decay,
                                       scope='fa_layer3',
                                       boundary_label=sub_boundary1)
    #l0_points = feature_decoding_layer(l0_xyz, l1_xyz, l0_points, l1_points, 0.1, sigma, 16, [128,128,128], is_training, bn_decay, weight_decay, scope='fa_layer4', boundary_label=boundary_label)
    l0_points = feature_decoding_layer(l0_xyz,
                                       l1_xyz,
                                       l0_points,
                                       l1_points,
                                       0.1,
                                       sigma,
                                       16, [128, 128, 128],
                                       is_training,
                                       bn_decay,
                                       weight_decay,
                                       scope='fa_layer4',
                                       boundary_label=boundary_label)

    # FC layers
    net = tf_util.conv1d(l0_points,
                         128,
                         1,
                         padding='VALID',
                         bn=True,
                         is_training=is_training,
                         scope='fc1',
                         bn_decay=bn_decay,
                         weight_decay=weight_decay)
    net = tf.concat([net, point_cloud], axis=2)
    end_points['feats'] = net
    net = tf_util.dropout(net,
                          keep_prob=0.5,
                          is_training=is_training,
                          scope='dp1')
    net = tf_util.conv1d(net,
                         num_class,
                         1,
                         padding='VALID',
                         activation_fn=None,
                         weight_decay=weight_decay,
                         scope='fc2')

    return net, end_points