print('{} training images'.format(len(train_HRimages))) print('{} testing images'.format(len(test_HRimages))) HR_loader = torch.utils.data.DataLoader( train_HRimages, shuffle=False, batch_size=batch_size) #, pin_memory=cuda) LR_loader = torch.utils.data.DataLoader( train_LRimages, shuffle=False, batch_size=batch_size) #, pin_memory=cuda) lossfunc = torch.nn.SmoothL1Loss() #lossfunc = torch.nn.MSELoss() TV_weight = 0 #1.e-4 SL_weight = 0 #1.e-4 num_epochs = 50 tvloss = lf.TVLoss(TV_weight) styleloss = lf.StyleLoss(SL_weight) def train(model): model.train() if cuda: model = model.cuda() epoch_loss = [] epoch_psnr = [] all_loss = [] optimizer_name = torch.optim.Adam #lr = 0.001 w_decay = 0 #1.0e-4 optimizer = optimizer_name(model.parameters(), lr=lr, weight_decay=w_decay) gamma = 0.97
train_HRimages = HRimages[0:Ntrain] test_HRimages = HRimages[Ntrain:Ntrain + Ntest] train_LRimages = LRimages[0:Ntrain] test_LRimages = LRimages[Ntrain:Ntrain + Ntest] print('{} training images'.format(len(train_HRimages))) print('{} testing images'.format(len(test_HRimages))) HR_loader = torch.utils.data.DataLoader( train_HRimages, shuffle=False, batch_size=batch_size) #, pin_memory=cuda) LR_loader = torch.utils.data.DataLoader( train_LRimages, shuffle=False, batch_size=batch_size) #, pin_memory=cuda) lossfunc = torch.nn.SmoothL1Loss() #lossfunc = torch.nn.MSELoss() TV_weight = 5.e-5 styleloss = lf.StyleLoss(1.0e-14) num_epochs = 100 def train(model): model.train() if cuda: model = model.cuda() epoch_loss = [] all_loss = [] optimizer_name = torch.optim.Adam lr = 0.001 w_decay = 1.0e-5 optimizer = optimizer_name(model.parameters(), lr=lr, weight_decay=w_decay)