示例#1
0
    def __init__(self,
                 cfg,
                 opt,
                 save_video=False,
                 video_save_opt=DEFAULT_VIDEO_SAVE_OPT,
                 queueSize=1024):
        self.cfg = cfg
        self.opt = opt
        self.video_save_opt = video_save_opt

        self.eval_joints = EVAL_JOINTS
        self.save_video = save_video
        self.final_result = []
        self.heatmap_to_coord = get_func_heatmap_to_coord(cfg)
        # initialize the queue used to store frames read from
        # the video file
        if opt.sp:
            self.result_queue = Queue(maxsize=queueSize)
            self.final_result_queue = Queue(maxsize=queueSize)
        else:
            self.result_queue = mp.Queue(maxsize=queueSize)
            self.final_result_queue = mp.Queue(maxsize=queueSize)

        if opt.save_img:
            if not os.path.exists(opt.outputpath + '/vis'):
                os.mkdir(opt.outputpath + '/vis')

        if opt.pose_track:
            from PoseFlow.poseflow_infer import PoseFlowWrapper
            self.pose_flow_wrapper = PoseFlowWrapper(
                save_path=os.path.join(opt.outputpath, 'poseflow'))
示例#2
0
class DataWriter():
    def __init__(self,
                 cfg,
                 opt,
                 save_video=False,
                 video_save_opt=DEFAULT_VIDEO_SAVE_OPT,
                 queueSize=1024):
        self.cfg = cfg
        self.opt = opt
        self.video_save_opt = video_save_opt

        self.eval_joints = EVAL_JOINTS
        self.save_video = save_video
        self.final_result = []
        self.heatmap_to_coord = get_func_heatmap_to_coord(cfg)
        # initialize the queue used to store frames read from
        # the video file
        if opt.sp:
            self.result_queue = Queue(maxsize=queueSize)
            self.final_result_queue = Queue(maxsize=queueSize)
        else:
            self.result_queue = mp.Queue(maxsize=queueSize)
            self.final_result_queue = mp.Queue(maxsize=queueSize)

        if opt.save_img:
            if not os.path.exists(opt.outputpath + '/vis'):
                os.mkdir(opt.outputpath + '/vis')

        if opt.pose_track:
            from PoseFlow.poseflow_infer import PoseFlowWrapper
            self.pose_flow_wrapper = PoseFlowWrapper(
                save_path=os.path.join(opt.outputpath, 'poseflow'))

    def start_worker(self, target):
        if self.opt.sp:
            p = Thread(target=target, args=())
        else:
            p = mp.Process(target=target, args=())
        # p.daemon = True
        p.start()
        return p

    def start(self):
        # start a thread to read pose estimation results per frame
        self.result_worker = self.start_worker(self.update)
        return self

    def update(self):
        if self.save_video:
            # initialize the file video stream, adapt ouput video resolution to original video
            stream = cv2.VideoWriter(*[
                self.video_save_opt[k]
                for k in ['savepath', 'fourcc', 'fps', 'frameSize']
            ])
            if not stream.isOpened():
                print("Try to use other video encoders...")
                ext = self.video_save_opt['savepath'].split('.')[-1]
                fourcc, _ext = self.recognize_video_ext(ext)
                self.video_save_opt['fourcc'] = fourcc
                self.video_save_opt[
                    'savepath'] = self.video_save_opt['savepath'][:-4] + _ext
                stream = cv2.VideoWriter(*[
                    self.video_save_opt[k]
                    for k in ['savepath', 'fourcc', 'fps', 'frameSize']
                ])
            assert stream.isOpened(), 'Cannot open video for writing'
        # keep looping infinitelyd
        while True:
            # ensure the queue is not empty and get item
            (boxes, scores, ids, hm_data, cropped_boxes, orig_img,
             im_name) = self.wait_and_get(self.result_queue)
            if orig_img is None:
                # if the thread indicator variable is set (img is None), stop the thread
                self.wait_and_put(self.final_result_queue, None)
                if self.save_video:
                    stream.release()
                return
            # image channel RGB->BGR
            orig_img = np.array(orig_img, dtype=np.uint8)[:, :, ::-1]
            if boxes is None:
                if self.opt.save_img or self.save_video or self.opt.vis:
                    self.write_image(
                        orig_img,
                        im_name,
                        stream=stream if self.save_video else None)
            else:
                # location prediction (n, kp, 2) | score prediction (n, kp, 1)
                pred = hm_data.cpu().data.numpy()
                assert pred.ndim == 4

                if hm_data.size()[1] == 49:
                    self.eval_joints = [*range(0, 49)]
                pose_coords = []
                pose_scores = []
                for i in range(hm_data.shape[0]):
                    bbox = cropped_boxes[i].tolist()
                    pose_coord, pose_score = self.heatmap_to_coord(
                        pred[i][self.eval_joints], bbox)
                    pose_coords.append(
                        torch.from_numpy(pose_coord).unsqueeze(0))
                    pose_scores.append(
                        torch.from_numpy(pose_score).unsqueeze(0))
                preds_img = torch.cat(pose_coords)
                preds_scores = torch.cat(pose_scores)
                result = pose_nms(boxes, scores, ids, preds_img, preds_scores,
                                  self.opt.min_box_area)
                result = {'imgname': im_name, 'result': result}
                if self.opt.pose_track:
                    poseflow_result = self.pose_flow_wrapper.step(
                        orig_img, result)
                    for i in range(len(poseflow_result)):
                        result['result'][i]['idx'] = poseflow_result[i]['idx']
                self.wait_and_put(self.final_result_queue, result)
                if self.opt.save_img or self.save_video or self.opt.vis:
                    if hm_data.size()[1] == 49:
                        from alphapose.utils.vis import vis_frame_dense as vis_frame
                    elif self.opt.vis_fast:
                        from alphapose.utils.vis import vis_frame_fast as vis_frame
                    else:
                        from alphapose.utils.vis import vis_frame
                    img = vis_frame(
                        orig_img,
                        result,
                        add_bbox=(self.opt.pose_track | self.opt.tracking
                                  | self.opt.showbox))
                    self.write_image(
                        img,
                        im_name,
                        stream=stream if self.save_video else None)

    def write_image(self, img, im_name, stream=None):
        if self.opt.vis:
            cv2.imshow("AlphaPose Demo", img)
            cv2.waitKey(30)
        if self.opt.save_img:
            cv2.imwrite(os.path.join(self.opt.outputpath, 'vis', im_name), img)
        if self.save_video:
            stream.write(img)

    def wait_and_put(self, queue, item):
        queue.put(item)

    def wait_and_get(self, queue):
        return queue.get()

    def save(self, boxes, scores, ids, hm_data, cropped_boxes, orig_img,
             im_name):
        self.commit()
        # save next frame in the queue
        self.wait_and_put(
            self.result_queue,
            (boxes, scores, ids, hm_data, cropped_boxes, orig_img, im_name))

    def running(self):
        # indicate that the thread is still running
        time.sleep(0.2)
        self.commit()
        return not self.result_queue.empty()

    def count(self):
        # indicate the remaining images
        return self.result_queue.qsize()

    def stop(self):
        # indicate that the thread should be stopped
        self.save(None, None, None, None, None, None, None)
        while True:
            final_res = self.wait_and_get(self.final_result_queue)
            if final_res:
                self.final_result.append(final_res)
            else:
                break
        self.result_worker.join()

    def clear_queues(self):
        self.clear(self.result_queue)
        self.clear(self.final_result_queue)

    def clear(self, queue):
        while not queue.empty():
            queue.get()

    def commit(self):
        # commit finished final results to main process
        while not self.final_result_queue.empty():
            self.final_result.append(self.wait_and_get(
                self.final_result_queue))

    def results(self):
        # return final result
        return self.final_result

    def recognize_video_ext(self, ext=''):
        if ext == 'mp4':
            return cv2.VideoWriter_fourcc(*'mp4v'), '.' + ext
        elif ext == 'avi':
            return cv2.VideoWriter_fourcc(*'XVID'), '.' + ext
        elif ext == 'mov':
            return cv2.VideoWriter_fourcc(*'XVID'), '.' + ext
        else:
            print("Unknow video format {}, will use .mp4 instead of it".format(
                ext))
            return cv2.VideoWriter_fourcc(*'mp4v'), '.mp4'