def PLR(training_data,test_data,K_FOLD_SIZE,check): SSR_list = [] SSE_list = [] SST_list = [] # ro=0 RMSE=[] MSR_list = [] MSE_list = [] R_sqaured_list = [] F_list = [] Adjusted_R_squared_list = [] SSR_list1 = [] SSE_list1 = [] SST_list1 = [] # ro=0 MSR_list1 = [] MSE_list1 = [] R_sqaured_list1 = [] F_list1 = [] Adjusted_R_squared_list1 = [] LSE_list = [] res_list_test=[] predicted_test=[] res_list_train=[] predicted_train=[] y_actual_train=[] y_actual_test=[] d=[] R1=[] for i in range(0,K_FOLD_SIZE): LSE, Y_actual_, data = LSE_Calculation(training_data[i],check) LSE_list.append(LSE) row, column = np.shape(data) Y_pre = np.matmul(data, LSE) if (check==1): Y_pre = np.power(Y_pre, 10) res = prediction(Y_pre, Y_actual_) res_list_train.append(res) predicted_train.append(res) y_actual_train.append(Y_actual_) # print(Y_pre) # print(Y_pre) # print(Y_pre) # print(res) # print(predict(res, Y_actual_)) # mp.scatter(Y_pre, res, marker='o', c='b') # mp.title('Predicted VS residual') # mp.xlabel('Y_pre') # mp.ylabel('res') # mp.show() # mp.scatter(Y_pre, Y_actual, marker='o', c='b') # mp.title('Predicted VS actual') # mp.xlabel('Y_pre') # mp.ylabel('Y_actual') # mp.show() SSE = np.matmul(res, np.transpose(res)) # print(SSE)#sum of squares of residual SSE_list1.append(SSE) # print(SSE) SSR = SSR_Calc(Y_actual_, Y_pre, row) SSR_list1.append(SSR) # temp_SSM=np.subtract(Y_pre,Y_avg) # SSM=abs(temp_SSM)*abs(temp_SSM) # print(SSM) SST = SSR + SSE SST_list1.append(SST) # ro=ro+row R_sqaured = SSR / SST # Adjusted_R_squared_list.append(Adjusted_R_squared) R_sqaured_list1.append(R_sqaured) # print(R_sqaured) MSE = SSE / ((row - column - 1)) MSE_list1.append(MSE) R1.append(math.sqrt(MSE)) MSR = SSR / (column) MSR_list1.append(MSR) MST = SST / float(row - 1) Adjusted_R_squared = 1 - MSE / MST Adjusted_R_squared_list1.append(Adjusted_R_squared) # MST_list.append(MST) F = MSR / MSE F_list1.append(F) # print("For Training Data") # data = teat_data[i].drop(['log_commercial-price'], axis=1) # print(data) data = test_data[i].drop(['Commercial-rate'], axis=1) if check == 1: data = data.drop(['log_commercial_rate'], axis=1) row, column = data.shape # print(data) # print(row, column) Y_actual_ = test_data[i]['Commercial-rate'] # print(Y_actual_) Y_actual_ = Y_actual_.values weight = np.identity(row) # Y_actual = x[i]['log_commercial-price'] # Y_actual = Y_actual.values # print(Y_actual) # norm, data = Normalization(data) # print(Y_actual) # print(data) Y_pre = np.matmul(data, LSE) if (check == 1): Y_pre = np.power(Y_pre, 10) res = prediction(Y_pre, Y_actual_) res_list_test.append(res) d.append(data) predicted_test.append(Y_pre) y_actual_test.append(Y_actual_) # Y_pre = np.power(Y_pre, 10) # print(Y_pre) # print(Y_pre) # print(Y_pre) # print(res) # print(predict(res, Y_actual_)) # mp.scatter(Y_pre, res, marker='o', c='b') # mp.title('Predicted VS residual') # mp.xlabel('Y_pre') # mp.ylabel('res') # mp.show() # mp.scatter(Y_pre, Y_actual, marker='o', c='b') # mp.title('Predicted VS actual') # mp.xlabel('Y_pre') # mp.ylabel('Y_actual') # mp.show() SSE = np.matmul(res, np.transpose(res)) # print(SSE)#sum of squares of residual SSE_list.append(SSE) # print(SSE) SSR = SSR_Calc(Y_actual_, Y_pre, row) SSR_list.append(SSR) # temp_SSM=np.subtract(Y_pre,Y_avg) # SSM=abs(temp_SSM)*abs(temp_SSM) # print(SSM) SST = SSR + SSE SST_list.append(SST) # ro=ro+row R_sqaured = SSR / SST # Adjusted_R_squared_list.append(Adjusted_R_squared) R_sqaured_list.append(R_sqaured) # print(R_sqaured) MSE = SSE / ((row - column - 1)) MSE_list.append(MSE) RMSE.append(math.sqrt(MSE)) MSR = SSR / (column) MSR_list.append(MSR) MST = SST / float(row - 1) Adjusted_R_squared = 1 - MSE / MST Adjusted_R_squared_list.append(Adjusted_R_squared) # MST_list.append(MST) F = MSR / MSE F_list.append(F) print("For Training Data") k=ANOVA_CALC(SSE_list1, SST_list1, SSR_list1, R_sqaured_list1,R1, MSE_list1, MSR_list1, F_list1, Adjusted_R_squared_list1,K_FOLD_SIZE) print("For Test Data") k_test=ANOVA_CALC(SSE_list, SST_list, SSR_list, R_sqaured_list, MSE_list, RMSE,MSR_list, F_list, Adjusted_R_squared_list,K_FOLD_SIZE) return LSE_list, column,k,k_test,d,res_list_test,res_list_train,predicted_test,predicted_train,y_actual_test,y_actual_train,MSE_list
def speech_recognize(): '''So far, this code is able to store a file into file name. audio_file has the name of the file, e.g. ./audio.wav, which is saved locally by urlretrieve ''' args = request.args uri = json.loads(args['uri'])['uri'] # return uri model = args['model'] mix = args['mix'] audio_file = url_to_audio_file(uri) #return audio_file ''' currently we only support tone ''' if model == 'Tone': y = audio_file_to_array(audio_file, 8000) #first add a random tone frequency = random.randint(500, 1200) if 'mix' in args: y_tone = generate_tone(8000, len(y) / 8000, np.array([frequency]), np.array([0.06]))[0] y = np.add(y, y_tone) #handle tone: this will return the URL #takes 2 sec clips and 8000 sr ys = audio_array_to_duration_segments(y, 8000, 2.0) #now get the results for each of the ys and, get the individual sound arrays, concatenate them, and convert to a .wav #file locally total_model_output = [] for y in ys: model_output = discard_tone(np.array(y), 8000) total_model_output.extend(model_output.tolist()) denoised_data = np.array(total_model_output) print(denoised_data.shape) file_name = ''.join( random.choices(string.ascii_uppercase + string.digits, k=8)) file_name = file_name + '.wav' path_to_file = './audioFiles/' + file_name # librosa.output.write_wav(path_to_file, denoised_data[0], 8000) write(path_to_file, 8000, denoised_data) # return path_to_file return send_file(path_to_file, mimetype="audio/wav", as_attachment=True, attachment_filename=file_name) elif model == "Dog": weights_path = './dog_model' model = unet() # audio_input_prediction = [audio_file] sample_rate = 8000 min_duration = 1 frame_length = 8064 hop_length_frame = 8064 n_fft = 256 hop_length_fft = 63 #we need to split the arbitrary length audio file into data_hold = audio_file_to_array(audio_file, 8000) sr = 8000 # return str(len(data_hold)) broken = audio_array_to_duration_segments(data_hold, 8000, 1.0) one_sec_files = [] for i in broken: t = ''.join( random.choices(string.ascii_uppercase + string.digits, k=6))[1] file_name = './audioFiles/' + t + '.wav' nparray = np.array(i) print(type(nparray)) write(file_name, sr, nparray) one_sec_files.append(file_name) print(one_sec_files) final_sound_list = [] for one_sec_file in one_sec_files: denoised_data = prediction(weights_path, model, [one_sec_file], sample_rate, min_duration, frame_length, hop_length_frame, n_fft, hop_length_fft) final_sound_list.extend(denoised_data.tolist()) file_name = ''.join( random.choices(string.ascii_uppercase + string.digits, k=8))[1] file_name = file_name + '.wav' path_to_file = './audioFiles/' + file_name librosa.output.write_wav(path_to_file, 8000, numpy.array(final_sound_list)) return send_file(path_to_file, mimetype="audio/wav", as_attachment=True, attachment_filename=file_name)
def compare(company1, company2): dicty = {} # company1 cp1 = dt.DataReader(company1, data_source="yahoo", start="2010-1-1") sr = simple_return(company1) lr = log_return(company1) mcarlo = monte_forcast(company1) beta_value = beta(company1) prd = prediction(company1) plt.figure(8) plt.clf() plt.title(f"Growth Of {company1.split('.')[0]}") plt.plot(cp1["Close"]) fig = plt.gcf() buf = io.BytesIO() fig.savefig(buf, format="png") buf.seek(0) string = base64.b64encode(buf.read()) growth_plot_cp1 = urllib.parse.quote(string) dicty["Growth_Plot_Cp1"] = growth_plot_cp1 dicty["Simple_return_Cp1"] = round(sr["Overall_Mean"], 3) dicty["Simple_return_plot_Cp1"] = sr["Plot"] dicty["Log_return_Cp1"] = round(lr["Overall_Mean"], 3) dicty["Log_return_Plot_Cp1"] = lr["Plot"] dicty["Var_Cp1"] = mcarlo["Variance_return"] dicty["Std_Cp1"] = mcarlo["Std_deviation"] dicty["Drift_Cp1"] = mcarlo["Drift"] dicty["Norm_Cp1"] = mcarlo["Norm"] dicty["Future_Iteration_Cp1"] = mcarlo['plot'] dicty["Beta_Cp1"] = beta_value['Beta'] dicty["Cov_mrkt_wrt_stk_Cp1"] = beta_value['Cov Market wrt Stock'] dicty["Variance_Market_Cp1"] = beta_value["Var Market"] dicty["Volatility_Cp1"] = beta_value["Volatility_of_stock"] dicty["Future_Pred_Cp1"] = prd["Plot2"] # company2 cp2 = dt.DataReader(company2, data_source="yahoo", start="2010-1-1") sr = simple_return(company2) lr = log_return(company2) mcarlo = monte_forcast(company2) beta_value = beta(company2) prd = prediction(company2) plt.figure(8) plt.clf() plt.title(f"Growth Of {company2.split('.')[0]}") plt.plot(cp2["Close"]) fig = plt.gcf() buf = io.BytesIO() fig.savefig(buf, format="png") buf.seek(0) string = base64.b64encode(buf.read()) growth_plot_cp2 = urllib.parse.quote(string) dicty["Growth_Plot_Cp2"] = growth_plot_cp2 dicty["Simple_return_Cp2"] = round(sr["Overall_Mean"], 3) dicty["Simple_return_plot_Cp2"] = sr["Plot"] dicty["Log_return_Cp2"] = round(lr["Overall_Mean"], 3) dicty["Log_return_Plot_Cp2"] = lr["Plot"] dicty["Var_Cp2"] = mcarlo["Variance_return"] dicty["Std_Cp2"] = mcarlo["Std_deviation"] dicty["Drift_Cp2"] = mcarlo["Drift"] dicty["Norm_Cp2"] = mcarlo["Norm"] dicty["Future_Iteration_Cp2"] = mcarlo['plot'] dicty["Beta_Cp2"] = beta_value['Beta'] dicty["Cov_mrkt_wrt_stk_Cp2"] = beta_value['Cov Market wrt Stock'] dicty["Variance_Market_Cp2"] = beta_value["Var Market"] dicty["Volatility_Cp2"] = beta_value["Volatility_of_stock"] dicty["Future_Pred_Cp2"] = prd["Plot2"]