示例#1
0
 def __init__(self):
     OneDFit.__init__(self, [
         "epsilon", "gamma", "P", "tau", "i", "Is", "Omega", "lambda", "a",
         "e", "w"
     ])
     self.setRootName("OhtaELL05")
     self["P"] = 1
     self._ke = pyasl.KeplerEllipse(1, 1)
     self._setkepellpars()
示例#2
0
    def __init__(self):
        """
        This class implements analytical expressions for the Rossiter-McLaughlin \
        effect for the case when the anomalous radial velocity is obtained by \
        cross-correlation with a stellar spectrum, according to *Hirano et. al 2010*.

        .. note::
          The intrinsic line profile and the rotation kernel are both \
          approximated by Gaussians, while the planet is assumed to be \
          'sufficiently small enough'.

        *Fit parameters*:
         - linLimb - linear limb-darkening parameter
         - quadLimb - quadratic limb-darkening parameter
         - gamma   - Rp/Rs (ratio of planetary and stellar radius)
         - P       - Orbital period [d]
         - T0      - Central transit time
         - i       - Inclination of orbit [rad]
         - Is      - Inclination of stellar rotation axis [rad]
         - Omega   - Angular rotation velocity (star) [rad/s]
         - lambda  - Sky-projected angle between stellar rotation axis and normal of orbit plane [rad]
         - a       - Semi major axis [stellar radii]
         - vbeta   - natural line broadening [km/s]
         - vSurf   - maximum surface velocity [km/s]

       By default all parameters remain frozen.

       .. note::
         According to the input parameter units, the units of the model RV curve are **stellar-radii per second**.
         The original formulation by Hirano et al. uses two dispersion parameters, \
         `beta` and `sigma`. `beta` describes the width of an intrinsic line profile \
         modeled by a Gaussian; it corresponds to a 'broadening velocity' \
         vbeta = beta * c / lam0, where lam0 denotes a typical wavelength scale. \
         The dispersion parameter `sigma` describes line broadening due to stellar \
         rotation; it corresponds to a velocity of vSurf*sin(Is) = alpha*sigma*c/lam0, \
         where lam0 denotes the typical wavelength and alpha is a scaling \
         parameters depending on the limb-darkening coefficients.

        """
        OneDFit.__init__(self, [
            "linLimb", "quadLimb", "gamma", "P", "T0", "i", "Is", "Omega",
            "lambda", "a", "vbeta", "vSurf"
        ])
        self.flux = None
        self.setRootName("Hira10")
示例#3
0
  def __init__(self):
    """
      This class implements analytical expressions for the Rossiter-McLaughlin \
      effect for the case when the anomalous radial velocity is obtained by \
      cross-correlation with a stellar spectrum, according to *Hirano et. al 2010*.

      .. note::
        The intrinsic line profile and the rotation kernel are both \
        approximated by Gaussians, while the planet is assumed to be \
        'sufficiently small enough'.

      *Fit parameters*:
       - linLimb - linear limb-darkening parameter
       - quadLimb - quadratic limb-darkening parameter
       - gamma   - Rp/Rs (ratio of planetary and stellar radius)
       - P       - Orbital period [d]
       - T0      - Central transit time
       - i       - Inclination of orbit [rad]
       - Is      - Inclination of stellar rotation axis [rad]
       - Omega   - Angular rotation velocity (star) [rad/s]
       - lambda  - Sky-projected angle between stellar rotation axis and normal of orbit plane [rad]
       - a       - Semi major axis [stellar radii]
       - vbeta   - natural line broadening [km/s]
       - vSurf   - maximum surface velocity [km/s]

     By default all parameters remain frozen.

     .. note::
       According to the input parameter units, the units of the model RV curve are **stellar-radii per second**.
       The original formulation by Hirano et al. uses two dispersion parameters, \
       `beta` and `sigma`. `beta` describes the width of an intrinsic line profile \
       modeled by a Gaussian; it corresponds to a 'broadening velocity' \
       vbeta = beta * c / lam0, where lam0 denotes a typical wavelength scale. \
       The dispersion parameter `sigma` describes line broadening due to stellar \
       rotation; it corresponds to a velocity of vSurf*sin(Is) = alpha*sigma*c/lam0, \
       where lam0 denotes the typical wavelength and alpha is a scaling \
       parameters depending on the limb-darkening coefficients.

    """
    OneDFit.__init__(self,["linLimb", "quadLimb", "gamma", "P", "T0", "i", "Is", "Omega", "lambda", "a", "vbeta", "vSurf"])
    self.flux = None
    self.setRootName("Hira10")
示例#4
0
  def __init__(self):
    _ZList.__init__(self, "circular")
    OneDFit.__init__(self, ["p", "a", "i", "T0", "per"])
    self.freeze(["p", "a", "i", "T0", "per"])

    self._zlist=None
    def __init__(self):
        _ZList.__init__(self, "circular")
        OneDFit.__init__(self, ["p", "a", "i", "T0", "per"])
        self.freeze(["p", "a", "i", "T0", "per"])

        self._zlist = None
示例#6
0
 def __init__(self):
   OneDFit.__init__(self,["epsilon", "gamma", "P", "T0", "i", "Is", "Omega", "lambda", "a"])
   self.setRootName("Ohta05")
 def __init__(self):
     OneDFit.__init__(self, ["xi", "zhe", "P", "Mid_Transit_Time", "i", "zeta", "Omega_s", "lambda", "a"])
 def __init__(self):
   """
     @TODO - docu
   """
   OneDFit.__init__(self, ["i", "per", "T0", "brat"])
示例#9
0
 def __init__(self):
   OneDFit.__init__(self,["P", "T0", "K", "rv0"])
   self.setRootName("SinRV")
示例#10
0
 def __init__(self):
     OneDFit.__init__(self, ["P", "T0", "K", "rv0"])
     self.setRootName("SinRV")