def __init__(self): OneDFit.__init__(self, [ "epsilon", "gamma", "P", "tau", "i", "Is", "Omega", "lambda", "a", "e", "w" ]) self.setRootName("OhtaELL05") self["P"] = 1 self._ke = pyasl.KeplerEllipse(1, 1) self._setkepellpars()
def __init__(self): """ This class implements analytical expressions for the Rossiter-McLaughlin \ effect for the case when the anomalous radial velocity is obtained by \ cross-correlation with a stellar spectrum, according to *Hirano et. al 2010*. .. note:: The intrinsic line profile and the rotation kernel are both \ approximated by Gaussians, while the planet is assumed to be \ 'sufficiently small enough'. *Fit parameters*: - linLimb - linear limb-darkening parameter - quadLimb - quadratic limb-darkening parameter - gamma - Rp/Rs (ratio of planetary and stellar radius) - P - Orbital period [d] - T0 - Central transit time - i - Inclination of orbit [rad] - Is - Inclination of stellar rotation axis [rad] - Omega - Angular rotation velocity (star) [rad/s] - lambda - Sky-projected angle between stellar rotation axis and normal of orbit plane [rad] - a - Semi major axis [stellar radii] - vbeta - natural line broadening [km/s] - vSurf - maximum surface velocity [km/s] By default all parameters remain frozen. .. note:: According to the input parameter units, the units of the model RV curve are **stellar-radii per second**. The original formulation by Hirano et al. uses two dispersion parameters, \ `beta` and `sigma`. `beta` describes the width of an intrinsic line profile \ modeled by a Gaussian; it corresponds to a 'broadening velocity' \ vbeta = beta * c / lam0, where lam0 denotes a typical wavelength scale. \ The dispersion parameter `sigma` describes line broadening due to stellar \ rotation; it corresponds to a velocity of vSurf*sin(Is) = alpha*sigma*c/lam0, \ where lam0 denotes the typical wavelength and alpha is a scaling \ parameters depending on the limb-darkening coefficients. """ OneDFit.__init__(self, [ "linLimb", "quadLimb", "gamma", "P", "T0", "i", "Is", "Omega", "lambda", "a", "vbeta", "vSurf" ]) self.flux = None self.setRootName("Hira10")
def __init__(self): """ This class implements analytical expressions for the Rossiter-McLaughlin \ effect for the case when the anomalous radial velocity is obtained by \ cross-correlation with a stellar spectrum, according to *Hirano et. al 2010*. .. note:: The intrinsic line profile and the rotation kernel are both \ approximated by Gaussians, while the planet is assumed to be \ 'sufficiently small enough'. *Fit parameters*: - linLimb - linear limb-darkening parameter - quadLimb - quadratic limb-darkening parameter - gamma - Rp/Rs (ratio of planetary and stellar radius) - P - Orbital period [d] - T0 - Central transit time - i - Inclination of orbit [rad] - Is - Inclination of stellar rotation axis [rad] - Omega - Angular rotation velocity (star) [rad/s] - lambda - Sky-projected angle between stellar rotation axis and normal of orbit plane [rad] - a - Semi major axis [stellar radii] - vbeta - natural line broadening [km/s] - vSurf - maximum surface velocity [km/s] By default all parameters remain frozen. .. note:: According to the input parameter units, the units of the model RV curve are **stellar-radii per second**. The original formulation by Hirano et al. uses two dispersion parameters, \ `beta` and `sigma`. `beta` describes the width of an intrinsic line profile \ modeled by a Gaussian; it corresponds to a 'broadening velocity' \ vbeta = beta * c / lam0, where lam0 denotes a typical wavelength scale. \ The dispersion parameter `sigma` describes line broadening due to stellar \ rotation; it corresponds to a velocity of vSurf*sin(Is) = alpha*sigma*c/lam0, \ where lam0 denotes the typical wavelength and alpha is a scaling \ parameters depending on the limb-darkening coefficients. """ OneDFit.__init__(self,["linLimb", "quadLimb", "gamma", "P", "T0", "i", "Is", "Omega", "lambda", "a", "vbeta", "vSurf"]) self.flux = None self.setRootName("Hira10")
def __init__(self): _ZList.__init__(self, "circular") OneDFit.__init__(self, ["p", "a", "i", "T0", "per"]) self.freeze(["p", "a", "i", "T0", "per"]) self._zlist=None
def __init__(self): _ZList.__init__(self, "circular") OneDFit.__init__(self, ["p", "a", "i", "T0", "per"]) self.freeze(["p", "a", "i", "T0", "per"]) self._zlist = None
def __init__(self): OneDFit.__init__(self,["epsilon", "gamma", "P", "T0", "i", "Is", "Omega", "lambda", "a"]) self.setRootName("Ohta05")
def __init__(self): OneDFit.__init__(self, ["xi", "zhe", "P", "Mid_Transit_Time", "i", "zeta", "Omega_s", "lambda", "a"])
def __init__(self): """ @TODO - docu """ OneDFit.__init__(self, ["i", "per", "T0", "brat"])
def __init__(self): OneDFit.__init__(self,["P", "T0", "K", "rv0"]) self.setRootName("SinRV")
def __init__(self): OneDFit.__init__(self, ["P", "T0", "K", "rv0"]) self.setRootName("SinRV")