示例#1
0
def turnIntoRebin(CO):
    """
    Turn a "normal" fitting object into rebinning fitting object.

    This function accepts a class object representing a model and
    returns another class object extended by the rebinning functionality.

    Parameters
    ----------
    CO : A class object
        The class object describing the model to use
        rebinning.

    Returns
    -------
    Rebinned model : Fitting object
        Another class object extended by the rebinning functionality.
    """

    # Check for evaluate
    if not hasattr(CO, "evaluate"):
        raise(PE.PyANotImplemented("The class object has no evaluate method. Is it really a model?",
                                   where="turnIntoRebin"))
    # Check for other properties and methods
    for p in ["setRebinArray_Ndt", "rebinTimes", "rebinIdent"]:
        if hasattr(CO, p):
            PE.warn(PE.PyANameClash("Class object already has attribute: `" + p + "`. Potentially harmful..",
                                    solution="Check class object, maybe rename attribute", where="turnIntoRebin"))

    class _ModelRebin(CO):
        """
        Base class providing rebinning functionality.

        The model is evaluated at more points than actually needed.
        Several points are than averaged to obtain a "binned" model,
        which can, for example, account for finite integration times
        in observations.

        Attributes
        ----------
        rebinTimes : array
            Defined the abscissa values at which
            to evaluate the model to be rebinned afterwards.
        rebinIdent : dict
            A dictionary associating bin number (in the unbinned
            model) with a list holding the bins in `rebinTimes`,
            which are to be averaged to obtain the binned model.
        """

        def __init__(self, *args, **kwargs):
            CO.__init__(self, *args, **kwargs)
            self.rebinTimes = None
            self.rebinIdent = None

        def setRebinArray_Ndt(self, time, N, dt):
            """  
            Defines the overbinning parameters (`rebinTimes`, `rebinIdent`).

            It is assumed that the time points given in the `time`
            array refer to the center of the time bins and every bin has
            length `dt`. The bins are then subdivided into `N` subintervals;
            the center of each such subinterval becomes
            a point in the overbinned time axis (`rebinTimes`).

            Parameters
            ----------
            time : array
                The time axis of the "observed" (not overbinned)
                transit light-curve.
            N : int
                The number of point into which to subdivide each time
                bin of length `dt`.
            dt : float
                The length of each time bin (on the original not
                oversampled time axis).
            """

            self.rebinTimes = numpy.zeros(time.size * N)
            self.rebinIdent = {}
            for i in smo.range(time.size):
                self.rebinTimes[i * N:(i + 1) * N] = \
                    (time[i] - dt / 2.0) + (numpy.arange(N) * dt) / \
                    float(N) + dt / float(N) / 2.0
                self.rebinIdent[i] = list(range(i * N, (i + 1) * N))

        def evaluate(self, x):
            """
            Calculate the model.

            Parameters
            ----------
            x : array
                The abscissa values.

            Returns
            -------
            model : array,
                The binned model.

            Notes
            -----
            This function calculates the model at those time points
            specified by the `rebinTimes` property and saves the result in the
            class property `unbinnedModel`. Then it bins
            according to the definitions in `rebinIdent` and save the resulting model
            in the `binnedModel` property.
            """
            if (self.rebinTimes is None) or (self.rebinIdent is None):
                raise(PE.PyAValError("Rebinning parameters (properties rebinTimes and/or rebinIdent) not appropriately defined.",
                                     solution=["Use setRebinArray_Ndt method.", "Define the properties by accessing them directly."]))
            # Calculate the model using current parameters at the time points
            # defined in the `rebinTimes` array
            self.unbinnedModel = CO.evaluate(self, self.rebinTimes)
            # Build up rebinned model
            self.binnedModel = numpy.zeros(x.size)
            for i in smo.range(x.size):
                self.binnedModel[i] = numpy.mean(
                    self.unbinnedModel[self.rebinIdent[i]])
            # Return the resulting model
            return self.binnedModel

    return _ModelRebin
示例#2
0
 def prob(self, Pn):
     raise (PE.PyANotImplemented("`prob` is not yet implemented."))
示例#3
0
 def acceptanceTest(self, dE):
   raise(PE.PyANotImplemented("The 'acceptanceTest' is not implemented.", \
         solution="Use another scheduler class (e.g., 'BoltzmannSAS') or implement the method."))
示例#4
0
 def probInv(self, Prob):
     raise (PE.PyANotImplemented("`probInv` is not yet implemented."))
示例#5
0
 def updateTemperature(self):
   raise(PE.PyANotImplemented("The 'updateTemperature' is not implemented.", \
         solution="Use another scheduler class (e.g., 'BoltzmannSAS') or implement the method."))