示例#1
0
def Matching(cf):

    if cf.compute.useCUDA and cf.compute.gpuID is not None:
        ca.SetCUDADevice(cf.compute.gpuID)

    # prepare output directory
    common.Mkdir_p(os.path.dirname(cf.io.outputPrefix))

    # Output loaded config
    if cf.io.outputPrefix is not None:
        cfstr = Config.ConfigToYAML(MatchingConfigSpec, cf)
        with open(cf.io.outputPrefix + "parsedconfig.yaml", "w") as f:
            f.write(cfstr)

    mType = ca.MEM_DEVICE if cf.compute.useCUDA else ca.MEM_HOST


    I0 = common.LoadITKImage(cf.study.I0, mType)
    I1 = common.LoadITKImage(cf.study.I1, mType)
    #ca.DivC_I(I0,255.0)
    #ca.DivC_I(I1,255.0)
    grid = I0.grid()

    ca.ThreadMemoryManager.init(grid, mType, 1)
    
    #common.DebugHere()
    # TODO: need to work on these
    t = [x*1./cf.optim.nTimeSteps for x in range(cf.optim.nTimeSteps+1)]
    checkpointinds = range(1,len(t))
    checkpointstates =  [(ca.Field3D(grid,mType),ca.Field3D(grid,mType)) for idx in checkpointinds]

    p = MatchingVariables(I0,I1, cf.vectormomentum.sigma, t,checkpointinds, checkpointstates, cf.vectormomentum.diffOpParams[0], cf.vectormomentum.diffOpParams[1], cf.vectormomentum.diffOpParams[2], cf.optim.Niter, cf.optim.stepSize, cf.optim.maxPert, cf.optim.nTimeSteps, integMethod = cf.optim.integMethod, optMethod=cf.optim.method, nInv=cf.optim.NIterForInverse,plotEvery=cf.io.plotEvery, plotSlice = cf.io.plotSlice, quiverEvery = cf.io.quiverEvery, outputPrefix = cf.io.outputPrefix)

    RunMatching(p)

    # write output
    if cf.io.outputPrefix is not None: 
        # reset all variables by shooting once, may have been overwritten
        CAvmCommon.IntegrateGeodesic(p.m0,p.t,p.diffOp,\
                          p.m, p.g, p.ginv,\
                          p.scratchV1, p.scratchV2,p. scratchV3,\
                          p.checkpointstates, p.checkpointinds,\
                          Ninv=p.nInv, integMethod = p.integMethod)
        common.SaveITKField(p.m0, cf.io.outputPrefix+"m0.mhd")
        common.SaveITKField(p.ginv, cf.io.outputPrefix+"phiinv.mhd")
        common.SaveITKField(p.g, cf.io.outputPrefix+"phi.mhd")
def AtlasWriteOutput(cf, atlas, m_array, nodeSubjectsIds, isReporter):
    # save initial momenta for all individuals
    for itsub in range(len(nodeSubjectsIds)):
        common.SaveITKField(
            m_array[itsub], cf.io.outputPrefix +
            str(nodeSubjectsIds[itsub]).replace('.', '_') + "_m0.mhd")

    # save the atlas
    if isReporter:
        common.SaveITKImage(atlas, cf.io.outputPrefix + "atlas.mhd")
示例#3
0
def HGMWriteOutput(cf, groupState, tDiscGroup, isReporter):
    # save initial momenta for residual geodesics, p, for all individuals
    for i in range(len(groupState.t)):
        if tDiscGroup[i].J is not None:
            common.SaveITKField(
                tDiscGroup[i].p0, cf.io.outputPrefix +
                str(tDiscGroup[i].subjectId).replace('.', '_') + "_p0.mhd")
            # write individual's energy history
            energyFilename = cf.io.outputPrefix + str(
                tDiscGroup[i].subjectId).replace('.',
                                                 '_') + "ResidualEnergy.csv"
            HGMWriteEnergyHistoryToFile(tDiscGroup[i].Energy, energyFilename)

    # save initial image and momenta for group gedoesic
    if isReporter:
        common.SaveITKImage(groupState.I0, cf.io.outputPrefix + "I0.mhd")
        common.SaveITKField(groupState.m0, cf.io.outputPrefix + "m0.mhd")
        # write energy history
        energyFilename = cf.io.outputPrefix + "TotalEnergyHistory.csv"
        HGMWriteEnergyHistoryToFile(groupState.EnergyHistory, energyFilename)
示例#4
0
def GeoRegWriteOuput(subjectId, cf, p, t, Imsmts, cpinds, cpstates, msmtinds,
                     gradAtMsmts, EnergyHistory):
    # save initial image and momenta for regression geodesic
    common.SaveITKImage(p.I0, cf.io.outputPrefix + subjectId + "I0.mhd")
    common.SaveITKField(p.m0, cf.io.outputPrefix + subjectId + "m0.mhd")

    # save residual images for regression geodesic
    # TODO:

    # write Energy details
    energyFilename = cf.io.outputPrefix + subjectId + "Energy.csv"
    with open(energyFilename, 'w') as f:
        csv_writer = csv.writer(f, delimiter='\t')
        csv_writer.writerows(EnergyHistory)
def MatchingImageMomentaWriteOuput(cf, geodesicState, EnergyHistory, m0, n1):
    grid = geodesicState.J0.grid()
    mType = geodesicState.J0.memType()

    # save momenta for the gedoesic
    common.SaveITKField(geodesicState.p0, cf.io.outputPrefix + "p0.mhd")

    # save matched momenta for the geodesic
    if cf.vectormomentum.matchImOnly:
        m0 = common.LoadITKField(cf.study.m, mType)

    ca.CoAd(geodesicState.p, geodesicState.rhoinv, m0)
    common.SaveITKField(geodesicState.p, cf.io.outputPrefix + "m1.mhd")

    # momenta match energy
    if cf.vectormomentum.matchImOnly:
        vecdiff = ca.ManagedField3D(grid, mType)
        ca.Sub_I(geodesicState.p, n1)
        ca.Copy(vecdiff, geodesicState.p)
        geodesicState.diffOp.applyInverseOperator(geodesicState.p)
        momentaMatchEnergy = ca.Dot(vecdiff, geodesicState.p) / (
            float(geodesicState.p0.nVox()) * geodesicState.SigmaSlope *
            geodesicState.SigmaSlope)
        # save energy
        energyFilename = cf.io.outputPrefix + "testMomentaMatchEnergy.csv"
        with open(energyFilename, 'w') as f:
            print >> f, momentaMatchEnergy

    # save matched image for the geodesic
    tempim = ca.ManagedImage3D(grid, mType)
    ca.ApplyH(tempim, geodesicState.J0, geodesicState.rhoinv)
    common.SaveITKImage(tempim, cf.io.outputPrefix + "I1.mhd")

    # save energy
    energyFilename = cf.io.outputPrefix + "energy.csv"
    MatchingImageMomentaWriteEnergyHistoryToFile(EnergyHistory, energyFilename)
def MatchingImageMomentaWriteOuput(cf, geodesicState):
    # save momenta for the gedoesic
    common.SaveITKField(geodesicState.p0, cf.io.outputPrefix + "p0.mhd")
示例#7
0
def write_result(result, output_prefix):
    common.SaveITKImage(result['I1'], output_prefix+"I1.mhd")
    common.SaveITKField(result['phiinv'], output_prefix+"phiinv.mhd")
def GeodesicShooting(cf):

    # prepare output directory
    common.Mkdir_p(os.path.dirname(cf.io.outputPrefix))

    # Output loaded config
    if cf.io.outputPrefix is not None:
        cfstr = Config.ConfigToYAML(GeodesicShootingConfigSpec, cf)
        with open(cf.io.outputPrefix + "parsedconfig.yaml", "w") as f:
            f.write(cfstr)

    mType = ca.MEM_DEVICE if cf.useCUDA else ca.MEM_HOST
    #common.DebugHere()
    I0 = common.LoadITKImage(cf.study.I0, mType)
    m0 = common.LoadITKField(cf.study.m0, mType)
    grid = I0.grid()

    ca.ThreadMemoryManager.init(grid, mType, 1)
    # set up diffOp
    if mType == ca.MEM_HOST:
        diffOp = ca.FluidKernelFFTCPU()
    else:
        diffOp = ca.FluidKernelFFTGPU()
    diffOp.setAlpha(cf.diffOpParams[0])
    diffOp.setBeta(cf.diffOpParams[1])
    diffOp.setGamma(cf.diffOpParams[2])
    diffOp.setGrid(grid)

    g = ca.Field3D(grid, mType)
    ginv = ca.Field3D(grid, mType)
    mt = ca.Field3D(grid, mType)
    It = ca.Image3D(grid, mType)
    t = [
        x * 1. / cf.integration.nTimeSteps
        for x in range(cf.integration.nTimeSteps + 1)
    ]
    checkpointinds = range(1, len(t))
    checkpointstates = [(ca.Field3D(grid, mType), ca.Field3D(grid, mType))
                        for idx in checkpointinds]

    scratchV1 = ca.Field3D(grid, mType)
    scratchV2 = ca.Field3D(grid, mType)
    scratchV3 = ca.Field3D(grid, mType)
    # scale momenta to shoot
    cf.study.scaleMomenta = float(cf.study.scaleMomenta)
    if abs(cf.study.scaleMomenta) > 0.000000:
        ca.MulC_I(m0, float(cf.study.scaleMomenta))
        CAvmCommon.IntegrateGeodesic(m0,t,diffOp, mt, g, ginv,\
                                     scratchV1,scratchV2,scratchV3,\
                                     keepstates=checkpointstates,keepinds=checkpointinds,
                                     Ninv=cf.integration.NIterForInverse, integMethod = cf.integration.integMethod)
    else:
        ca.Copy(It, I0)
        ca.Copy(mt, m0)
        ca.SetToIdentity(ginv)
        ca.SetToIdentity(g)

    # write output
    if cf.io.outputPrefix is not None:
        # scale back shotmomenta before writing
        if abs(cf.study.scaleMomenta) > 0.000000:
            ca.ApplyH(It, I0, ginv)
            ca.CoAd(mt, ginv, m0)
            ca.DivC_I(mt, float(cf.study.scaleMomenta))

        common.SaveITKImage(It, cf.io.outputPrefix + "I1.mhd")
        common.SaveITKField(mt, cf.io.outputPrefix + "m1.mhd")
        common.SaveITKField(ginv, cf.io.outputPrefix + "phiinv.mhd")
        common.SaveITKField(g, cf.io.outputPrefix + "phi.mhd")
        GeodesicShootingPlots(g, ginv, I0, It, cf)
        if cf.io.saveFrames:
            SaveFrames(checkpointstates, checkpointinds, I0, It, m0, mt, cf)
示例#9
0
def predict_image(args):
    if (args.use_CPU_for_shooting):
        mType = ca.MEM_HOST
    else:
        mType = ca.MEM_DEVICE

    # load the prediction network
    predict_network_config = torch.load(args.prediction_parameter)
    prediction_net = create_net(args, predict_network_config)

    batch_size = args.batch_size
    patch_size = predict_network_config['patch_size']
    input_batch = torch.zeros(batch_size, 2, patch_size, patch_size,
                              patch_size).cuda()

    # start prediction
    for i in range(0, len(args.moving_image)):
        common.Mkdir_p(os.path.dirname(args.output_prefix[i]))
        if (args.affine_align):
            # Perform affine registration to both moving and target image to the ICBM152 atlas space.
            # Registration is done using Niftireg.
            call([
                "reg_aladin", "-noSym", "-speeeeed", "-ref", args.atlas,
                "-flo", args.moving_image[i], "-res",
                args.output_prefix[i] + "moving_affine.nii", "-aff",
                args.output_prefix[i] + 'moving_affine_transform.txt'
            ])

            call([
                "reg_aladin", "-noSym", "-speeeeed", "-ref", args.atlas,
                "-flo", args.target_image[i], "-res",
                args.output_prefix[i] + "target_affine.nii", "-aff",
                args.output_prefix[i] + 'target_affine_transform.txt'
            ])

            moving_image = common.LoadITKImage(
                args.output_prefix[i] + "moving_affine.nii", mType)
            target_image = common.LoadITKImage(
                args.output_prefix[i] + "target_affine.nii", mType)
        else:
            moving_image = common.LoadITKImage(args.moving_image[i], mType)
            target_image = common.LoadITKImage(args.target_image[i], mType)

        #preprocessing of the image
        moving_image_np = preprocess_image(moving_image, args.histeq)
        target_image_np = preprocess_image(target_image, args.histeq)

        grid = moving_image.grid()
        moving_image_processed = common.ImFromNPArr(moving_image_np, mType)
        target_image_processed = common.ImFromNPArr(target_image_np, mType)
        moving_image.setGrid(grid)
        target_image.setGrid(grid)

        predict_transform_space = False
        if 'matlab_t7' in predict_network_config:
            predict_transform_space = True
        # run actual prediction
        prediction_result = util.predict_momentum(moving_image_np,
                                                  target_image_np, input_batch,
                                                  batch_size, patch_size,
                                                  prediction_net,
                                                  predict_transform_space)

        m0 = prediction_result['image_space']
        m0_reg = common.FieldFromNPArr(prediction_result['image_space'], mType)
        registration_result = registration_methods.geodesic_shooting(
            moving_image_processed, target_image_processed, m0_reg,
            args.shoot_steps, mType, predict_network_config)
        phi = common.AsNPCopy(registration_result['phiinv'])
        phi_square = np.power(phi, 2)

        for sample_iter in range(1, args.samples):
            print(sample_iter)
            prediction_result = util.predict_momentum(
                moving_image_np, target_image_np, input_batch, batch_size,
                patch_size, prediction_net, predict_transform_space)
            m0 += prediction_result['image_space']
            m0_reg = common.FieldFromNPArr(prediction_result['image_space'],
                                           mType)
            registration_result = registration_methods.geodesic_shooting(
                moving_image_processed, target_image_processed, m0_reg,
                args.shoot_steps, mType, predict_network_config)
            phi += common.AsNPCopy(registration_result['phiinv'])
            phi_square += np.power(
                common.AsNPCopy(registration_result['phiinv']), 2)

        m0_mean = np.divide(m0, args.samples)
        m0_reg = common.FieldFromNPArr(m0_mean, mType)
        registration_result = registration_methods.geodesic_shooting(
            moving_image_processed, target_image_processed, m0_reg,
            args.shoot_steps, mType, predict_network_config)
        phi_mean = registration_result['phiinv']
        phi_var = np.divide(phi_square, args.samples) - np.power(
            np.divide(phi, args.samples), 2)

        #save result
        common.SaveITKImage(registration_result['I1'],
                            args.output_prefix[i] + "I1.mhd")
        common.SaveITKField(phi_mean,
                            args.output_prefix[i] + "phiinv_mean.mhd")
        common.SaveITKField(common.FieldFromNPArr(phi_var, mType),
                            args.output_prefix[i] + "phiinv_var.mhd")