'eigenvalues.mat', { 'Omega_mat': Omega_mat, 'strength_scan': strength_scan, 'DQ_0_vect': 0 * strength_scan, 'M00_array': M00_array, 'omega0': omega0, 'omega_s': omega_s, 'l_min': l_min, 'l_max': l_max, 'm_max': m_max, 'N_max': N_max }) import matplotlib.pyplot as plt plt.close('all') ms.mystyle(fontsz=13, traditional_look=False) mask_unstable = np.imag(Omega_mat) < -abs_min_imag_unstab Omega_mat_unstable = Omega_mat.copy() Omega_mat_unstable[~mask_unstable] = np.nan + 1j * np.nan i_mode = -1 mask_mode = np.abs(np.real(Omega_mat) / omega_s - i_mode) < 0.5 plt.plot(strength_scan, np.imag(Omega_mat), '.b') plt.plot(strength_scan, np.imag(Omega_mat), '.b') Omega_mat_mode = Omega_mat.copy() Omega_mat_mode[~mask_mode] = np.nan title = f'l_min={l_min}, l_max={l_max}, m_max={m_max}, N_max={N_max}' figre = plt.figure(200)
y_after = np.take(y_after, indsort) z_after = np.take(z_after, indsort) xp_after = np.take(xp_after, indsort) yp_after = np.take(yp_after, indsort) x_i[:, ii] = x_after[:n_record] xp_i[:, ii] = xp_after[:n_record] y_i[:, ii] = y_after[:n_record] yp_i[:, ii] = yp_after[:n_record] from tune_analysis import tune_analysis qx_i, qy_i, qx_centroid, qy_centroid = tune_analysis(x_i, xp_i, y_i, yp_i) pl.close('all') ms.mystyle(fontsz=14) pl.figure(1) sp1 = pl.subplot(2, 1, 1) pl.plot(np.mean(x_i, axis=0), '.-b', markersize=5, linewidth=2, label='PyHT') pl.ylabel('<x>') pl.grid('on') ms.sciy() pl.legend(prop={'size': 14}) pl.subplot(2, 1, 2, sharex=sp1) pl.plot(np.mean(y_i, axis=0), '.-b', markersize=5, linewidth=2, label='PyHT') pl.xlabel('Turn'); pl.ylabel('<y>') pl.grid('on') ms.sciy() #pl.savefig(filename.split('_prb.dat')[0]+'_centroids.png', dpi=200)