def testSecurityMovingRank(self): window = 10 mq = SecurityMovingRank(window, ['close']) for i in range(len(self.aapl['close'])): data = dict(aapl=dict(close=self.aapl['close'][i], open=self.aapl['open'][i]), ibm=dict(close=self.ibm['close'][i], open=self.ibm['open'][i])) mq.push(data) if i < window: start = 0 else: start = i + 1 - window if i < 1: continue value = mq.value for name in value.index(): con = self.dataSet[name]['close'][start:(i + 1)] sorted_con = sorted(con) expected = sorted_con.index(self.dataSet[name]['close'][i]) calculated = value[name] self.assertAlmostEqual( expected, calculated, 12, 'at index {0}\n' 'expected: {1:.12f}\n' 'calculated: {2:.12f}'.format(i, expected, calculated))
def testSecurityMovingRank(self): window = 100 mr = SecurityMovingRank(window, 'x') for i in range(len(self.aapl['close'])): data = { 'aapl': { 'y': self.aapl['close'][i], 'x': self.aapl['open'][i] }, 'ibm': { 'y': self.ibm['close'][i], 'x': self.ibm['open'][i] } } mr.push(data) if i >= window - 1: for name in mr.value.index(): series_x = getattr(self, name)['open'][i - window + 1:i + 1] expected_res = np.argsort(series_x.argsort())[-1] self.assertAlmostEqual(mr.value[name], expected_res, msg= \ "at index {0} and symbol {1}\n" "expected: {2}\n" "calculated: {3}".format(i, name, expected_res, mr.value[name]))
def testSecurityMovingRankPickle(self): ma = SecurityMovingRank(10, 'x') data = dict(aapl=dict(x=1., y=2), ibm=dict(x=2., y=3)) data2 = dict(aapl=dict(x=2., y=3), ibm=dict(x=3., y=4)) ma.push(data) ma.push(data2) with tempfile.NamedTemporaryFile('w+b', delete=False) as f: pickle.dump(ma, f) with open(f.name, 'rb') as f2: pickled = pickle.load(f2) os.unlink(f.name) for i, v in enumerate(np.random.rand(20)): data['aapl']['x'] = v data['aapl']['y'] = v + 0.1 data['ibm']['x'] = v + 0.1 data['ibm']['y'] = v + 0.2 ma.push(data) pickled.push(data) if i >= 10: for name in ma.value.index(): self.assertAlmostEqual(ma.value[name], pickled.value[name])
def testSecurityMovingRankDeepcopy(self): ma = SecurityMovingRank(10, 'x') data = dict(aapl=dict(x=1., y=2), ibm=dict(x=2., y=3)) data2 = dict(aapl=dict(x=2., y=3), ibm=dict(x=3., y=4)) ma.push(data) ma.push(data2) copied = copy.deepcopy(ma) for i, v in enumerate(np.random.rand(20)): data['aapl']['x'] = v data['aapl']['y'] = v + 0.1 data['ibm']['x'] = v + 0.1 data['ibm']['y'] = v + 0.2 ma.push(data) copied.push(data) if i >= 10: for name in ma.value.index(): self.assertAlmostEqual(ma.value[name], copied.value[name])