def runForwardSimulation( sim_name, db_path, geom_name, num_particles, incoherent_model_type, threads, use_energy_bins = False, use_native = False, log_file = None, enable_relax = True ): ## Initialize the MPI session session = MPI.GlobalMPISession( len(sys.argv), sys.argv ) # Suppress logging on all procs except for the master (proc=0) Utility.removeAllLogs() session.initializeLogs( 0, True ) if not log_file is None: session.initializeLogs( log_file, 0, True ) ## Set the simulation properties simulation_properties = MonteCarlo.SimulationProperties() # Simulate photons only simulation_properties.setParticleMode( MonteCarlo.PHOTON_MODE ) simulation_properties.setIncoherentModelType( incoherent_model_type ) simulation_properties.setNumberOfPhotonHashGridBins( 100 ) # Enable atomic relaxation if enable_relax: simulation_properties.setAtomicRelaxationModeOn( MonteCarlo.PHOTON ) else: simulation_properties.setAtomicRelaxationModeOff( MonteCarlo.PHOTON ) # Set the number of histories to run and the number of rendezvous simulation_properties.setNumberOfHistories( num_particles ) simulation_properties.setMinNumberOfRendezvous( 10 ) simulation_properties.setNumberOfSnapshotsPerBatch( 10 ) ## Set up the materials database = Data.ScatteringCenterPropertiesDatabase( db_path ) # Extract the properties from the database c_atom_properties = database.getAtomProperties( Data.ZAID(6000) ) n_atom_properties = database.getAtomProperties( Data.ZAID(7000) ) o_atom_properties = database.getAtomProperties( Data.ZAID(8000) ) na_atom_properties = database.getAtomProperties( Data.ZAID(11000) ) mg_atom_properties = database.getAtomProperties( Data.ZAID(12000) ) al_atom_properties = database.getAtomProperties( Data.ZAID(13000) ) si_atom_properties = database.getAtomProperties( Data.ZAID(14000) ) ar_atom_properties = database.getAtomProperties( Data.ZAID(18000) ) k_atom_properties = database.getAtomProperties( Data.ZAID(19000) ) ca_atom_properties = database.getAtomProperties( Data.ZAID(20000) ) ti_atom_properties = database.getAtomProperties( Data.ZAID(22000) ) mn_atom_properties = database.getAtomProperties( Data.ZAID(25000) ) fe_atom_properties = database.getAtomProperties( Data.ZAID(26000) ) # Set the atom definitions scattering_center_definitions = Collision.ScatteringCenterDefinitionDatabase() c_atom_definition = scattering_center_definitions.createDefinition( "C", Data.ZAID(6000) ) n_atom_definition = scattering_center_definitions.createDefinition( "N", Data.ZAID(7000) ) o_atom_definition = scattering_center_definitions.createDefinition( "O", Data.ZAID(8000) ) na_atom_definition = scattering_center_definitions.createDefinition( "Na", Data.ZAID(11000) ) mg_atom_definition = scattering_center_definitions.createDefinition( "Mg", Data.ZAID(12000) ) al_atom_definition = scattering_center_definitions.createDefinition( "Al", Data.ZAID(13000) ) si_atom_definition = scattering_center_definitions.createDefinition( "Si", Data.ZAID(14000) ) ar_atom_definition = scattering_center_definitions.createDefinition( "Ar", Data.ZAID(18000) ) k_atom_definition = scattering_center_definitions.createDefinition( "K", Data.ZAID(19000) ) ca_atom_definition = scattering_center_definitions.createDefinition( "Ca", Data.ZAID(20000) ) ti_atom_definition = scattering_center_definitions.createDefinition( "Ti", Data.ZAID(22000) ) mn_atom_definition = scattering_center_definitions.createDefinition( "Mn", Data.ZAID(25000) ) fe_atom_definition = scattering_center_definitions.createDefinition( "Fe", Data.ZAID(26000) ) if use_native: data_file_type = Data.PhotoatomicDataProperties.Native_EPR_FILE file_version = 0 else: data_file_type = Data.PhotoatomicDataProperties.ACE_EPR_FILE file_version = 12 c_atom_definition.setPhotoatomicDataProperties( c_atom_properties.getSharedPhotoatomicDataProperties( data_file_type, file_version ) ) n_atom_definition.setPhotoatomicDataProperties( n_atom_properties.getSharedPhotoatomicDataProperties( data_file_type, file_version ) ) o_atom_definition.setPhotoatomicDataProperties( o_atom_properties.getSharedPhotoatomicDataProperties( data_file_type, file_version ) ) na_atom_definition.setPhotoatomicDataProperties( na_atom_properties.getSharedPhotoatomicDataProperties( data_file_type, file_version ) ) mg_atom_definition.setPhotoatomicDataProperties( mg_atom_properties.getSharedPhotoatomicDataProperties( data_file_type, file_version ) ) al_atom_definition.setPhotoatomicDataProperties( al_atom_properties.getSharedPhotoatomicDataProperties( data_file_type, file_version ) ) si_atom_definition.setPhotoatomicDataProperties( si_atom_properties.getSharedPhotoatomicDataProperties( data_file_type, file_version ) ) ar_atom_definition.setPhotoatomicDataProperties( ar_atom_properties.getSharedPhotoatomicDataProperties( data_file_type, file_version ) ) k_atom_definition.setPhotoatomicDataProperties( k_atom_properties.getSharedPhotoatomicDataProperties( data_file_type, file_version ) ) ca_atom_definition.setPhotoatomicDataProperties( ca_atom_properties.getSharedPhotoatomicDataProperties( data_file_type, file_version ) ) ti_atom_definition.setPhotoatomicDataProperties( ti_atom_properties.getSharedPhotoatomicDataProperties( data_file_type, file_version ) ) mn_atom_definition.setPhotoatomicDataProperties( mn_atom_properties.getSharedPhotoatomicDataProperties( data_file_type, file_version ) ) fe_atom_definition.setPhotoatomicDataProperties( fe_atom_properties.getSharedPhotoatomicDataProperties( data_file_type, file_version ) ) # Set the definition for material 1 (ave soil US from PNNL-15870 Rev1) material_definitions = Collision.MaterialDefinitionDatabase() material_definitions.addDefinition( "Soil", 1, ["O", "Na", "Mg", "Al", "Si", "K", "Ca", "Ti", "Mn", "Fe"], [0.670604, 0.005578, 0.011432, 0.053073, 0.201665, 0.007653, 0.026664, 0.002009, 0.000272, 0.021050] ) material_definitions.addDefinition( "Air", 2, ["C", "N", "O", "Ar"], [0.000150, 0.784431, 0.231781, 0.004671] ) # Set up the geometry model_properties = DagMC.DagMCModelProperties( geom_name ) model_properties.setMaterialPropertyName( "mat" ) model_properties.setDensityPropertyName( "rho" ) model_properties.setTerminationCellPropertyName( "termination.cell" ) model_properties.setReflectingSurfacePropertyName( "reflecting.surface" ) model_properties.setSurfaceFluxName( "surface.flux" ) model_properties.useFastIdLookup() # Load the model model = DagMC.DagMCModel( model_properties ) # Fill the model with the defined material filled_model = Collision.FilledGeometryModel( db_path, scattering_center_definitions, material_definitions, simulation_properties, model, True ) # Set up the source particle_distribution = ActiveRegion.StandardParticleDistribution( "contaminated soil dist" ) decay_energy_dist = Distribution.DiscreteDistribution( [0.186211, 0.241995, 0.2656, 0.2952228, 0.3046, 0.3519321, 0.60932, 0.6496, 0.665447, 0.76836, 0.78596, 0.80618, 0.934056, 1.120294, 1.15521, 1.238122, 1.280976, 1.377669, 1.401515, 1.407988, 1.50921, 1.661274, 1.729595, 1.764491, 1.847429, 2.118514, 2.204059, 2.44770], [3.64, 7.251, 51.0, 18.42, 28.0, 35.60, 45.49, 3.4, 1.531, 4.894, 1.06, 1.264, 3.107, 14.92, 1.633, 5.834, 1.434, 3.988, 1.330, 2.394, 2.130, 1.047, 2.878, 15.30, 2.025, 1.160, 4.924, 1.548] ) energy_dimension_dist = ActiveRegion.IndependentEnergyDimensionDistribution( decay_energy_dist ) particle_distribution.setDimensionDistribution( energy_dimension_dist ) uniform_xy_position_dist = Distribution.UniformDistribution( -5.0, 5.0 ) uniform_z_position_dist = Distribution.UniformDistribution( 5000, 5100 ) x_position_dimension_dist = ActiveRegion.IndependentPrimarySpatialDimensionDistribution( uniform_xy_position_dist ) y_position_dimension_dist = ActiveRegion.IndependentSecondarySpatialDimensionDistribution( uniform_xy_position_dist ) z_position_dimension_dist = ActiveRegion.IndependentTertiarySpatialDimensionDistribution( uniform_z_position_dist ) particle_distribution.setDimensionDistribution( x_position_dimension_dist ) particle_distribution.setDimensionDistribution( y_position_dimension_dist ) particle_distribution.setDimensionDistribution( z_position_dimension_dist ) particle_distribution.constructDimensionDistributionDependencyTree() # The generic distribution will be used to generate photons photon_distribution = ActiveRegion.StandardPhotonSourceComponent( 0, 1.0, model, particle_distribution ) # Assign the photon source component to the source source = ActiveRegion.StandardParticleSource( [photon_distribution] ) # Set up the event handler event_handler = Event.EventHandler( model, simulation_properties ) # Create the estimator response functions (flux-to-effective dose from # ICRP-116 table A.1, ISO values) flux_to_dose_dist = Distribution.TabularDistribution_LinLin( [0.01, 0.015, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.511, 0.6, 0.662, 0.8, 1.0, 1.117, 1.33, 1.5, 2.0, 3.0], [0.0288, 0.0560, 0.0812, 0.127, 0.158, 0.180, 0.199, 0.218, 0.239, 0.287, 0.429, 0.589, 0.932, 1.28, 1.63, 1.67, 1.97, 2.17, 2.62, 3.25, 3.60, 4.20, 4.66, 5.90, 8.08] ) partial_response_function = ActiveRegion.EnergyParticleResponseFunction( flux_to_dose_dist ) # convert from pSv to nSv response_function = partial_response_function / 1000.0 response = ActiveRegion.StandardParticleResponse( response_function ) source_norm = 1462129.344 # Create the surface flux estimator surface_flux_estimator = Event.WeightMultipliedSurfaceFluxEstimator( 1, source_norm, [13], model ) surface_flux_estimator.setParticleTypes( [MonteCarlo.PHOTON] ) surface_flux_estimator.setCosineCutoffValue( 0.1 ) surface_flux_estimator.setResponseFunctions( [response] ) event_handler.addEstimator( surface_flux_estimator ) # Create the second surface flux estimator if use_energy_bins: surface_flux_estimator_2 = Event.WeightMultipliedSurfaceFluxEstimator( 2, source_norm, [13], model ) surface_flux_estimator_2.setEnergyDiscretization( energy_bins ) surface_flux_estimator_2.setParticleTypes( [MonteCarlo.PHOTON] ) surface_flux_estimator_2.setCosineCutoffValue( 0.1 ) surface_flux_estimator_2.setResponseFunctions( [response] ) event_handler.addEstimator( surface_flux_estimator_2 ) # Set up the simulation manager factory = Manager.ParticleSimulationManagerFactory( filled_model, source, event_handler, simulation_properties, sim_name, "xml", threads ) # Create the simulation manager manager = factory.getManager() manager.useSingleRendezvousFile() # Allow logging on all procs session.restoreOutputStreams() ## Run the simulation if session.size() == 1: manager.runInterruptibleSimulation() else: manager.runSimulation()
# Set the definition for materials material_definitions = Collision.MaterialDefinitionDatabase() material_definitions.addDefinition( "H", 1, ["H"], [1.0] ) filled_model = Collision.FilledGeometryModel( db_path, scattering_center_definitions, material_definitions, simulation_properties, model, True ) #source particle_distribution = ActiveRegion.StandardParticleDistribution("Forward source") particle_distribution.setPosition(0, 0, 0) particle_distribution.setEnergy(20) particle_distribution.constructDimensionDistributionDependencyTree() source_component = ActiveRegion.StandardPhotonSourceComponent(1, 1.0, model, particle_distribution) source = ActiveRegion.StandardParticleSource([source_component]) event_handler = Event.EventHandler( model, simulation_properties ) #I DON'T THINK MCNP HAS THIS KIND OF ESTIMATOR, SO IGNORE IF IT DOESN'T EXIST cell_integral_estimator = Event.WeightMultipliedCellCollisionFluxEstimator(1, 1.0, [1], model) cell_integral_estimator.setParticleTypes([MonteCarlo.PHOTON]) event_handler.addEstimator(cell_integral_estimator) #ESTIMATOR OF INTEREST - TRACK LENGTH ESTIMATOR IN VOLUME 5 cell_integral_tl_estimator = Event.WeightMultipliedCellTrackLengthFluxEstimator(2, 1.0, [1], model) cell_integral_tl_estimator.setParticleTypes([MonteCarlo.PHOTON]) event_handler.addEstimator(cell_integral_tl_estimator)