def example_2( algo=algorithm.de(1), prob=problem.rosenbrock(10), topo=topology.barabasi_albert( 3, 3), n_evolve=100, n_isl=1024, pop_size=20, color_code='rank'): from PyGMO import problem, algorithm, island, archipelago from matplotlib.pyplot import savefig, close archi = archipelago(algo, prob, n_isl, pop_size, topology=topo) print("Drawing Initial Condition .. ") pos = archi.draw( scale_by_degree=True, n_size=3, e_alpha=0.03, n_color=color_code) savefig('archi000', dpi=72) close() for i in range(1, n_evolve): archi.evolve(1) archi.join() print("Drawing" + str(i) + "-th evolution .. ") pos = archi.draw( layout=pos, scale_by_degree=True, n_size=3, e_alpha=0.03, n_color=color_code) savefig('archi%03d' % i, dpi=72) close()
def test_simple_probs(self): """ Testing whether migration history matches the expected output for each migration_direction and distribution_type """ for migr_dir in [ migration_direction.source, migration_direction.destination ]: for dist_type in [ distribution_type.point_to_point, distribution_type.broadcast ]: prob = problem.rosenbrock(10) alg = algorithm.jde(20) archi = archipelago(alg, prob, 3, 20, migration_direction=migr_dir, distribution_type=dist_type) top = topology.ring(3) top.set_weight(0, 1, 0.0) top.set_weight(0, 2, 0.0) top.set_weight(1, 2, 0.0) top.set_weight(1, 0, 1.0) top.set_weight(2, 0, 1.0) top.set_weight(2, 1, 1.0) archi.topology = top archi.evolve(200) migr_hist = archi.dump_migr_history() # Below: After 200 evaluations, there should be some migrants from 1->0, 2->0 and 2->1 # There should be no migrants from 1->0, 2->0 and 2->1 self.assertTrue("(1,0,1)" not in migr_hist) self.assertTrue("(1,0,2)" not in migr_hist) self.assertTrue("(1,1,2)" not in migr_hist)
def run_test(n_trials=200, pop_size = 20, n_gen = 500): number_of_trials = n_trials number_of_individuals = pop_size number_of_generations = n_gen prob_list = [problem.schwefel(dim = 10), problem.michalewicz(dim = 10), problem.rastrigin(dim = 10), problem.rosenbrock(dim = 10), problem.ackley(dim = 10), problem.griewank(dim = 10)] if __extensions__['gtop']: prob_list.append(problem.cassini_1()) prob_list.append(problem.cassini_2()) prob_list.append(problem.gtoc_1()) prob_list.append(problem.rosetta()) prob_list.append(problem.messenger_full()) prob_list.append(problem.tandem(prob_id = 6, max_tof = 10)) algo_list = [algorithm.pso(gen = number_of_generations), algorithm.de(gen = number_of_generations,xtol=1e-30, ftol=1e-30), algorithm.jde(gen = number_of_generations, variant_adptv=2,xtol=1e-30, ftol=1e-30), algorithm.de_1220(gen = number_of_generations, variant_adptv=2,xtol=1e-30, ftol=1e-30), algorithm.sa_corana(iter = number_of_generations*number_of_individuals,Ts = 1,Tf = 0.01), algorithm.ihs(iter = number_of_generations*number_of_individuals), algorithm.sga(gen = number_of_generations), algorithm.cmaes(gen = number_of_generations,xtol=1e-30, ftol=1e-30), algorithm.bee_colony(gen = number_of_generations/2)] print('\nTrials: ' + str(n_trials) + ' - Population size: ' + str(pop_size) + ' - Generations: ' + str(n_gen)) for prob in prob_list: print('\nTesting problem: ' + prob.get_name() + ', Dimension: ' + str(prob.dimension) ) print('With Population Size: ' + str(pop_size) ) for algo in algo_list: print(' ' + str(algo)) best = [] best_x = [] for i in range(0,number_of_trials): isl = island(algo,prob,number_of_individuals) isl.evolve(1) isl.join() best.append(isl.population.champion.f) best_x.append(isl.population.champion.x) print(' Best:\t' + str(min(best)[0])) print(' Mean:\t' + str(mean(best))) print(' Std:\t' + str(std(best)))
def test_topology_serialize(self): """ Testing whether the weights are retained after serialization of an archipelago """ prob = problem.rosenbrock(10) alg = algorithm.jde(20) archi = archipelago(alg, prob, 4, 20) top = topology.ring(4) top.set_weight(0, 1, 0.01) top.set_weight(0, 3, 0.03) top.set_weight(1, 2, 0.12) top.set_weight(2, 1, 0.21) archi.topology = top archi.evolve(5) import pickle pickle.loads(pickle.dumps(archi)) self.assertEqual(archi.topology.get_weight(0, 1), 0.01) self.assertEqual(archi.topology.get_weight(0, 3), 0.03) self.assertEqual(archi.topology.get_weight(1, 2), 0.12) self.assertEqual(archi.topology.get_weight(2, 1), 0.21)
def test_simple_probs(self): """ Testing whether migration history matches the expected output for each migration_direction and distribution_type """ for migr_dir in [migration_direction.source, migration_direction.destination]: for dist_type in [distribution_type.point_to_point, distribution_type.broadcast]: prob = problem.rosenbrock(10) alg = algorithm.jde(20) archi = archipelago(alg, prob, 3, 20, migration_direction=migr_dir, distribution_type=dist_type) top = topology.ring(3) top.set_weight(0, 1, 0.0) top.set_weight(0, 2, 0.0) top.set_weight(1, 2, 0.0) top.set_weight(1, 0, 1.0) top.set_weight(2, 0, 1.0) top.set_weight(2, 1, 1.0) archi.topology = top archi.evolve(200) migr_hist = archi.dump_migr_history() # Below: After 200 evaluations, there should be some migrants from 1->0, 2->0 and 2->1 # There should be no migrants from 1->0, 2->0 and 2->1 self.assertTrue("(1,0,1)" not in migr_hist) self.assertTrue("(1,0,2)" not in migr_hist) self.assertTrue("(1,1,2)" not in migr_hist)
def run_test(n_trials=200, pop_size=20, n_gen=500): """ This function runs some tests on the algorthm. Use it to verify the correct installation of PyGMO. USAGE: PyGMO.run_test(n_trials=200, pop_size = 20, n_gen = 500) * n_trials: each algorithm will be called n_trials times on the same problem to then evaluate best, mean and std * pop_size: this determines the population size * n_gen: this regulates the maximim number of function evaluation """ from PyGMO import problem, algorithm, island from numpy import mean, std number_of_trials = n_trials number_of_individuals = pop_size number_of_generations = n_gen prob_list = [ problem.schwefel( dim=10), problem.rastrigin( dim=10), problem.rosenbrock( dim=10), problem.ackley( dim=10), problem.griewank( dim=10), problem.levy5(10)] if __extensions__['gtop']: prob_list.append(problem.cassini_1()) prob_list.append(problem.gtoc_1()) prob_list.append(problem.cassini_2()) prob_list.append(problem.messenger_full()) algo_list = [ algorithm.pso( gen=number_of_generations), algorithm.mde_pbx( gen=number_of_generations, xtol=1e-30, ftol=1e-30), algorithm.de( gen=number_of_generations, xtol=1e-30, ftol=1e-30), algorithm.jde( gen=number_of_generations, memory=False, xtol=1e-30, ftol=1e-30), algorithm.de_1220( gen=number_of_generations, memory=False, xtol=1e-30, ftol=1e-30), algorithm.sa_corana( iter=number_of_generations * number_of_individuals, Ts=1, Tf=0.01), algorithm.ihs( iter=number_of_generations * number_of_individuals), algorithm.sga( gen=number_of_generations), algorithm.cmaes( gen=number_of_generations, xtol=1e-30, ftol=1e-30, memory=False), algorithm.bee_colony( gen=number_of_generations / 2)] print('\nTrials: ' + str(n_trials) + ' - Population size: ' + str(pop_size) + ' - Generations: ' + str(n_gen)) for prob in prob_list: print('\nTesting problem: ' + prob.get_name() + ', Dimension: ' + str(prob.dimension)) print('With Population Size: ' + str(pop_size)) for algo in algo_list: print(' ' + str(algo)) best = [] best_x = [] for i in range(0, number_of_trials): isl = island(algo, prob, number_of_individuals) isl.evolve(1) isl.join() best.append(isl.population.champion.f) best_x.append(isl.population.champion.x) print(' Best:\t' + str(min(best)[0])) print(' Mean:\t' + str(mean(best))) print(' Std:\t' + str(std(best)))