def __init__(self, arg, *opt, **args) : BaseDataSet.__init__(self) if arg.__class__ == self.__class__ : other = arg self.datas = [other.datas[i].__class__(other.datas[i], *opt, **args) for i in range(len(other.datas))] elif type(arg) == type([]) : self.datas = arg else : raise ValueError, 'wrong type of input for DataAggregate' self.labels = self.datas[0].labels
def __init__(self, arg, **args) : """ :Parameters: - `arg` - a file name or another PairDataSet object. if a file name is supplied the constructor expects a dataset object as a keyword argument 'data' :Keywords: - `data` - a dataset object from which the kernel between the pairs of patterns is derived. - `patterns` - patterns to copy when performing copy construction """ BaseDataSet.__init__(self, arg, **args)
def __init__(self, arg, **args): """ :Parameters: - `arg` - a file name or another PairDataSet object. if a file name is supplied the constructor expects a dataset object as a keyword argument 'data' :Keywords: - `data` - a dataset object from which the kernel between the pairs of patterns is derived. - `patterns` - patterns to copy when performing copy construction """ BaseDataSet.__init__(self, arg, **args)
def __init__(self, arg, **args) : """ :Parameters: - `arg` - either an Aggregate object (for copy construction) or a list of C++ dataset objects :Keywords: - `weights` - a list of weights used for computing the dot product element i is the weight for dataset i in the aggregate """ BaseDataSet.__init__(self, arg, **args) self._trainingFunc = self.aggregate_train self._testingFunc = self.aggregate_test
def __init__(self, arg, **args): """ :Parameters: - `arg` - a file name or another PairDataSet object. if a file name is supplied the constructor expects a dataset object as a keyword argument 'data' :Keywords: - `data` - a dataset object from which the kernel between the pairs of patterns is derived. - `patterns` - patterns to copy when performing copy construction """ BaseDataSet.__init__(self) if arg.__class__ == self.__class__: self.copyConstruct(arg, **args) elif type(arg) == type(''): if 'data' not in args: raise ValueError, 'missing data object' self._data = args['data'] self.constructFromFile(arg) self.attachKernel('linear')
def __init__(self, arg, **args): """ :Parameters: - `arg` - a file name or another PairDataSet object. if a file name is supplied the constructor expects a dataset object as a keyword argument 'data' :Keywords: - `data` - a dataset object from which the kernel between the pairs of patterns is derived. - `patterns` - patterns to copy when performing copy construction """ BaseDataSet.__init__(self) if arg.__class__ == self.__class__: self.copyConstruct(arg, **args) elif type(arg) == type(""): if "data" not in args: raise ValueError, "missing data object" self._data = args["data"] self.constructFromFile(arg) self.attachKernel("linear")
def __init__(self, arg, **args) : """ :Parameters: - `arg` - a file name or another PairDataSet object. if a file name is supplied the constructor expects a dataset object as a keyword argument 'data' :Keywords: - `data` - a dataset object from which the kernel between the pairs of patterns is derived. - `patterns` - patterns to copy when performing copy construction """ BaseDataSet.__init__(self) if arg.__class__ == self.__class__ : if 'patterns' in args : patterns = args['patterns'] else : patterns = range(len(arg)) self.copyConstruct(arg, patterns) elif type(arg) == type('') : if 'data' not in args : raise ValueError, 'missing data object' self.data = args['data'] self.constructFromFile(arg)
def __init__(self, arg=None, **args) : self.container = csequencedata.SequenceData BaseDataSet.__init__(self, arg, **args) self.initialize(**args)
def __init__(self, arg=None, **args): self.container = csequencedata.SequenceData BaseDataSet.__init__(self, arg, **args) self.initialize(**args)