示例#1
0
def test_single_timestep(options):
    # Arrange
    stepper = Stepper(options=options, grid=GRID, non_unit_g_factor=True)
    advector = nondivergent_vector_field_2d(GRID, SIZE, TIMESTEP,
                                            stream_function, options.n_halo)
    g_factor = ScalarField(RHOD.astype(dtype=options.dtype),
                           halo=options.n_halo,
                           boundary_conditions=(Periodic(), Periodic()))
    mpdatas = {}
    for key, value in VALUES.items():
        advectee = ScalarField(np.full(GRID, value, dtype=options.dtype),
                               halo=options.n_halo,
                               boundary_conditions=(Periodic(), Periodic()))
        mpdatas[key] = Solver(stepper=stepper,
                              advectee=advectee,
                              advector=advector,
                              g_factor=g_factor)

    # Act
    for mpdata in mpdatas.values():
        mpdata.advance(n_steps=1)

    # Assert
    for value in mpdatas.values():
        assert np.isfinite(value.advectee.get()).all()
示例#2
0
def test_upwind(shape, ij0, out, courant_number):
    value = 44
    scalar_field_init = np.zeros(shape)
    scalar_field_init[ij0] = value

    vector_field_init = (
        np.full((shape[0] + 1, shape[1]), courant_number[0]),
        np.full((shape[0], shape[1] + 1), courant_number[1])
    )
    options = Options(n_iters=1)

    bcs = (Periodic(), Periodic())
    advectee = ScalarField(scalar_field_init, halo=options.n_halo, boundary_conditions=bcs)
    advector = VectorField(vector_field_init, halo=options.n_halo, boundary_conditions=bcs)

    mpdata = Solver(
        stepper=Stepper(options=options, grid=shape, n_threads=1),
        advector=advector,
        advectee=advectee
    )
    mpdata.advance(n_steps=1)

    np.testing.assert_array_equal(
        mpdata.advectee.get(),
        out
    )
 def test_2d_second_dim_contiguous():
     grid = (44, 44)
     data = np.empty(grid)
     boundary_conditions = (Periodic(), Periodic())
     sut = ScalarField(data,
                       halo=1,
                       boundary_conditions=boundary_conditions)
     assert sut.get()[0, :].data.contiguous
def test_timing_2d(benchmark,
                   options,
                   grid_static_str,
                   num_threads,
                   plot=False):
    if grid_static_str == "static":
        grid_static = True
    elif grid_static_str == "dynamic":
        grid_static = False
    else:
        raise ValueError()

    numba.set_num_threads(num_threads)

    settings = Settings(n_rotations=6)
    _, __, psi = from_pdf_2d(settings.pdf,
                             xrange=settings.xrange,
                             yrange=settings.yrange,
                             gridsize=settings.grid)

    advectee = ScalarField(data=psi.astype(dtype=options.dtype),
                           halo=options.n_halo,
                           boundary_conditions=(Periodic(), Periodic()))

    advector = VectorField(data=(np.full(
        (advectee.grid[0] + 1, advectee.grid[1]),
        COURANT[0],
        dtype=options.dtype),
                                 np.full(
                                     (advectee.grid[0], advectee.grid[1] + 1),
                                     COURANT[1],
                                     dtype=options.dtype)),
                           halo=options.n_halo,
                           boundary_conditions=(Periodic(), Periodic()))

    if grid_static:
        stepper = Stepper(options=options, grid=psi.shape)
    else:
        stepper = Stepper(options=options, n_dims=2)
    solver = Solver(stepper=stepper, advectee=advectee, advector=advector)

    def set_z():
        solver.advectee.get()[:] = psi

    benchmark.pedantic(solver.advance, (settings.n_steps, ),
                       setup=set_z,
                       warmup_rounds=1,
                       rounds=3)

    if options.n_iters == 1 or options.nonoscillatory:
        np.testing.assert_almost_equal(np.amin(solver.advectee.get()), H_0)
    assert np.amax(solver.advectee.get()) < 10 * H

    if plot:
        pyplot.imshow(solver.advectee.get())
        pyplot.colorbar()
        pyplot.show()
示例#5
0
    def test_vector_2d(halo, n_threads):
        # arrange
        grid = (4, 2)
        data = (np.array([
            [1, 6],
            [2, 7],
            [3, 8],
            [4, 9],
            [5, 10],
        ],
                         dtype=float),
                np.array([
                    [1, 5, 9],
                    [2, 6, 10],
                    [3, 7, 11],
                    [4, 8, 12],
                ],
                         dtype=float))
        boundary_conditions = (Periodic(),
                               Polar(grid=grid,
                                     longitude_idx=OUTER,
                                     latitude_idx=INNER))
        field = VectorField(data, halo, boundary_conditions)
        traversals = Traversals(grid=grid,
                                halo=halo,
                                jit_flags=JIT_FLAGS,
                                n_threads=n_threads)
        field.assemble(traversals)
        meta_and_data, fill_halos = field.impl
        sut = traversals._code['fill_halos_vector']  # pylint:disable=protected-access

        # act
        # pylint: disable-next=not-an-iterable
        for thread_id in numba.prange(n_threads):
            sut(thread_id, *meta_and_data, *fill_halos)
示例#6
0
def test_double_pass_donor_cell(n_iters):
    courant = .5

    options = Options(n_iters=n_iters, DPDC=True, nonoscillatory=True)
    state = np.array([0, 1, 0], dtype=options.dtype)
    boundary_conditions = (Periodic(),)

    mpdata = Solver(
        stepper=Stepper(options=options, n_dims=state.ndim, non_unit_g_factor=False),
        advectee=ScalarField(
            state,
            halo=options.n_halo,
            boundary_conditions=boundary_conditions
        ),
        advector=VectorField(
            (np.full(state.shape[0] + 1, courant, dtype=options.dtype),),
            halo=options.n_halo,
            boundary_conditions=boundary_conditions
        )
    )
    steps = 1

    conserved = np.sum(mpdata.advectee.get())
    mpdata.advance(steps)

    assert np.sum(mpdata.advectee.get()) == conserved
示例#7
0
def test_diffusion_only_2d(data0=np.array([[0, 0, 0], [0, 1., 0], [0, 0, 0]]),
                           mu_coeff=(.1, .1),
                           n_steps=1):
    # Arrange
    options = Options(non_zero_mu_coeff=True)
    boundary_conditions = tuple([Periodic()] * 2)
    advectee = ScalarField(data0, options.n_halo, boundary_conditions)
    advector = VectorField(data=(np.zeros(
        (data0.shape[0] + 1, data0.shape[1])),
                                 np.zeros(
                                     (data0.shape[0], data0.shape[1] + 1))),
                           halo=options.n_halo,
                           boundary_conditions=boundary_conditions)
    solver = Solver(stepper=Stepper(options=options, grid=data0.shape),
                    advector=advector,
                    advectee=advectee)

    # Act
    solver.advance(n_steps=n_steps, mu_coeff=mu_coeff)

    # Assert
    data1 = solver.advectee.get()
    np.testing.assert_almost_equal(actual=np.sum(data1), desired=np.sum(data0))
    assert np.amax(data0) > np.amax(data1)
    assert np.amin(data1) >= 0
    assert np.count_nonzero(data1) == 5
示例#8
0
    def test_scalar_2d(halo, n_threads):
        # arrange
        data = np.array([[1, 6], [2, 7], [3, 8], [4, 9]], dtype=float)
        boundary_condition = (Periodic(),
                              Polar(grid=data.shape,
                                    longitude_idx=OUTER,
                                    latitude_idx=INNER))
        field = ScalarField(data, halo, boundary_condition)
        traversals = Traversals(grid=data.shape,
                                halo=halo,
                                jit_flags=JIT_FLAGS,
                                n_threads=n_threads)
        field.assemble(traversals)
        meta_and_data, fill_halos = field.impl
        sut = traversals._code['fill_halos_scalar']  # pylint:disable=protected-access

        # act
        # pylint: disable-next=not-an-iterable
        for thread_id in numba.prange(n_threads):
            sut(thread_id, *meta_and_data, *fill_halos)

        # assert
        np.testing.assert_array_equal(
            field.data[halo:-halo, :halo],
            np.roll(field.get()[:, :halo], data.shape[OUTER] // 2, axis=OUTER))
        np.testing.assert_array_equal(
            field.data[halo:-halo, -halo:],
            np.roll(field.get()[:, -halo:], data.shape[OUTER] // 2,
                    axis=OUTER))
 def test_1d_contiguous():
     grid = (44, )
     data = np.empty(grid)
     boundary_conditions = (Periodic(), )
     sut = ScalarField(data,
                       halo=1,
                       boundary_conditions=boundary_conditions)
     assert sut.get().data.contiguous
示例#10
0
def test_upwind_1d():
    state = np.array([0, 1, 0])
    courant = 1

    options = Options(n_iters=1)
    mpdata = Solver(
        stepper=Stepper(options=options, n_dims=len(state.shape), non_unit_g_factor=False),
        advectee=ScalarField(
            state.astype(options.dtype),
            halo=options.n_halo,
            boundary_conditions=(Periodic(),)
        ),
        advector=VectorField(
            (np.full(state.shape[0] + 1, courant, dtype=options.dtype),),
            halo=options.n_halo,
            boundary_conditions=(Periodic(),)
        )
    )
    n_steps = 5

    conserved = np.sum(mpdata.advectee.get())
    mpdata.advance(n_steps)

    assert np.sum(mpdata.advectee.get()) == conserved
示例#11
0
def test_shared_advector():
    n_x = 100
    arr = np.zeros(n_x)
    opt1 = Options(n_iters=2, DPDC=True)
    opt2 = Options(n_iters=2)
    b_c = (Periodic(),)

    halo = opt1.n_halo
    assert opt2.n_halo == halo

    advector = VectorField(data=(np.zeros(n_x + 1),), halo=halo, boundary_conditions=b_c)
    _ = Solver(
        stepper=Stepper(options=opt1, grid=(n_x,)),
        advectee=ScalarField(data=arr, halo=halo, boundary_conditions=b_c),
        advector=advector
    )
    solver = Solver(
        stepper=Stepper(options=opt2, grid=(n_x,)),
        advectee=ScalarField(data=arr, halo=halo, boundary_conditions=b_c),
        advector=advector
    )
    solver.advance(1)
def test_formulae_upwind():
    # Arrange
    psi_data = np.array((0, 1, 0))
    flux_data = np.array((0, 0, 1, 0))

    options = Options()
    halo = options.n_halo
    traversals = Traversals(grid=psi_data.shape,
                            halo=halo,
                            jit_flags=options.jit_flags,
                            n_threads=1)
    upwind = make_upwind(options=options,
                         non_unit_g_factor=False,
                         traversals=traversals)

    boundary_conditions = (Periodic(), )

    psi = ScalarField(psi_data, halo, boundary_conditions)
    psi.assemble(traversals)
    psi_impl = psi.impl

    flux = VectorField((flux_data, ), halo, boundary_conditions)
    flux.assemble(traversals)
    flux_impl = flux.impl

    # Act
    with warnings.catch_warnings():
        warnings.simplefilter('ignore',
                              category=NumbaExperimentalFeatureWarning)
        upwind(
            traversals.null_impl,
            _Impl(field=psi_impl[IMPL_META_AND_DATA], bc=psi_impl[IMPL_BC]),
            _Impl(field=flux_impl[IMPL_META_AND_DATA], bc=flux_impl[IMPL_BC]),
            _Impl(field=traversals.null_impl.scalar[IMPL_META_AND_DATA],
                  bc=traversals.null_impl.scalar[IMPL_BC]))

    # Assert
    np.testing.assert_array_equal(psi.get(), np.roll(psi_data, 1))
    def test_scalar(data, halo, side, n_threads, dim):
        n_dims = len(data.shape)
        if n_dims == 1 and dim != INNER:
            return
        if n_dims == 2 and dim == MID3D:
            return
        if n_dims == 1 and n_threads > 1:
            return

        # arrange
        field = ScalarField(data, halo,
                            tuple(Periodic() for _ in range(n_dims)))
        traversals = make_traversals(grid=field.grid,
                                     halo=halo,
                                     n_threads=n_threads)
        field.assemble(traversals)
        meta_and_data, fill_halos = field.impl
        sut = traversals._code['fill_halos_scalar']  # pylint:disable=protected-access

        # act
        for thread_id in range(
                n_threads):  # TODO #96: xfail if not all threads executed?
            sut(thread_id, *meta_and_data, *fill_halos)

        # assert
        interior = (halo, -halo)
        if side == LEFT:
            np.testing.assert_array_equal(
                field.data[shift(
                    indices((None, halo), interior, interior)[:n_dims], dim)],
                data[shift(indices((-halo, None), ALL, ALL)[:n_dims], dim)])
        else:
            np.testing.assert_array_equal(
                field.data[shift(
                    indices((-halo, None), interior, interior)[:n_dims], dim)],
                data[shift(indices((None, halo), ALL, ALL)[:n_dims], dim)])
示例#14
0
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import numpy as np
import pytest
from PyMPDATA import Solver, Stepper, ScalarField, VectorField, Options
from PyMPDATA.boundary_conditions import Periodic

BCS = (Periodic(),)


@pytest.mark.parametrize("case", (
        {'g_factor': None, 'non_zero_mu_coeff': True, 'mu': None},
        {'g_factor': None, 'non_zero_mu_coeff': True, 'mu': (0,)},
        pytest.param({
            'g_factor': None,
            'non_zero_mu_coeff': False,
            'mu': (0,)
        }, marks=pytest.mark.xfail(strict=True)),
        pytest.param({
            'g_factor': ScalarField(np.asarray([1., 1]), Options().n_halo, BCS),
            'non_zero_mu_coeff': True,
            'mu': None
        }, marks=pytest.mark.xfail(strict=True))
))
def test_mu_arg_handling(case):
    opt = Options(non_zero_mu_coeff=case['non_zero_mu_coeff'])
    advector = VectorField((np.asarray([1., 2, 3]),), opt.n_halo, BCS)
    advectee = ScalarField(np.asarray([4., 5]), opt.n_halo, BCS)
    stepper = Stepper(options=opt, n_dims=1)
    sut = Solver(stepper, advectee, advector, case['g_factor'])

    sut.advance(1, mu_coeff=case['mu'])
示例#15
0
        "nt": case_data[4],
        "ni": case_data[5],
        "dimsplit": case_data[6],
        "input": case_data[7],
        "output": case_data[8]
    }
    # Arrange
    data = case["input"].reshape((case["nx"], case["ny"]))
    courant = [case["Cx"], case["Cy"]]
    options = Options(n_iters=case["ni"], dimensionally_split=case["dimsplit"])
    grid = data.shape
    advector_data = [
        np.full((grid[0] + 1, grid[1]), courant[0], dtype=options.dtype),
        np.full((grid[0], grid[1] + 1), courant[1], dtype=options.dtype)
    ]
    bcs = (Periodic(), Periodic())
    advector = VectorField(advector_data,
                           halo=options.n_halo,
                           boundary_conditions=bcs)
    advectee = ScalarField(data=data.astype(dtype=options.dtype),
                           halo=options.n_halo,
                           boundary_conditions=bcs)
    stepper = Stepper(options=options, grid=grid, non_unit_g_factor=False)
    mpdata = Solver(stepper=stepper, advectee=advectee, advector=advector)
    sut = mpdata

    # Act
    sut.advance(n_steps=case["nt"])

    # Assert
    np.testing.assert_almost_equal(sut.advectee.get(),
示例#16
0
    def __init__(self,
                 *,
                 advectees,
                 stream_function,
                 rhod_of_zZ,
                 dt,
                 grid,
                 size,
                 displacement,
                 n_iters=2,
                 infinite_gauge=True,
                 nonoscillatory=True,
                 third_order_terms=False):
        self.grid = grid
        self.size = size
        self.dt = dt
        self.stream_function = stream_function
        self.stream_function_time_dependent = (
            "t" in inspect.signature(stream_function).parameters)
        self.asynchronous = False
        self.thread: (Thread, None) = None
        self.displacement = displacement
        self.t = 0

        options = Options(
            n_iters=n_iters,
            infinite_gauge=infinite_gauge,
            nonoscillatory=nonoscillatory,
            third_order_terms=third_order_terms,
        )
        disable_threads_if_needed = {}
        if not conf.JIT_FLAGS["parallel"]:
            disable_threads_if_needed["n_threads"] = 1

        stepper = Stepper(options=options,
                          grid=self.grid,
                          non_unit_g_factor=True,
                          **disable_threads_if_needed)

        advector_impl = VectorField(
            (
                np.full((grid[0] + 1, grid[1]), np.nan),
                np.full((grid[0], grid[1] + 1), np.nan),
            ),
            halo=options.n_halo,
            boundary_conditions=(Periodic(), Periodic()),
        )

        g_factor = make_rhod(self.grid, rhod_of_zZ)
        g_factor_impl = ScalarField(
            g_factor.astype(dtype=options.dtype),
            halo=options.n_halo,
            boundary_conditions=(Periodic(), Periodic()),
        )

        self.g_factor_vec = (
            rhod_of_zZ(zZ=x_vec_coord(self.grid)[-1]),
            rhod_of_zZ(zZ=z_vec_coord(self.grid)[-1]),
        )
        self.mpdatas = {}
        for k, v in advectees.items():
            advectee_impl = ScalarField(
                np.asarray(v, dtype=options.dtype),
                halo=options.n_halo,
                boundary_conditions=(Periodic(), Periodic()),
            )
            self.mpdatas[k] = Solver(
                stepper=stepper,
                advectee=advectee_impl,
                advector=advector_impl,
                g_factor=g_factor_impl,
            )
    def test_vector(data, halo, side, n_threads, comp, dim_offset):
        n_dims = len(data)
        if n_dims == 1 and n_threads > 1:
            return
        if n_dims == 1 and (comp != INNER or dim_offset != 0):
            return
        if n_dims == 2 and (comp == MID3D or dim_offset == 2):
            return

        # arrange
        field = VectorField(data, halo,
                            tuple(Periodic() for _ in range(n_dims)))
        traversals = make_traversals(grid=field.grid,
                                     halo=halo,
                                     n_threads=n_threads)
        field.assemble(traversals)
        meta_and_data, fill_halos = field.impl
        sut = traversals._code['fill_halos_vector']  # pylint:disable=protected-access

        # act
        for thread_id in range(
                n_threads):  # TODO #96: xfail if not all threads executed?
            sut(thread_id, *meta_and_data, *fill_halos)

        # assert
        interior = (halo, -halo)
        if n_dims == 1 and halo == 1:
            np.testing.assert_array_equal(field.data[comp], data[comp])
        if side == LEFT:
            if dim_offset == 1:
                np.testing.assert_array_equal(
                    field.data[comp][shift(
                        indices((None, halo), (halo - 1, -(halo - 1)),
                                interior)[:n_dims], -comp + dim_offset)],
                    data[comp][shift(
                        indices((-halo, None), ALL, ALL)[:n_dims],
                        -comp + dim_offset)])
            elif dim_offset == 2:
                np.testing.assert_array_equal(
                    field.data[comp][shift(
                        indices((None, halo), interior,
                                (halo - 1, -(halo - 1)))[:n_dims],
                        -comp + dim_offset)], data[comp][shift(
                            indices((-halo, None), ALL, ALL)[:n_dims],
                            -comp + dim_offset)])
            elif dim_offset == 0:
                np.testing.assert_array_equal(
                    field.data[comp][shift(
                        indices((None, halo - 1), interior, interior)[:n_dims],
                        -comp + dim_offset)], data[comp][shift(
                            indices((-(halo - 1), None), ALL, ALL)[:n_dims],
                            -comp + dim_offset)])
        else:
            if dim_offset == 1:
                np.testing.assert_array_equal(
                    field.data[comp][shift(
                        indices((-halo, None), (halo - 1, -(halo - 1)),
                                interior)[:n_dims], -comp + dim_offset)],
                    data[comp][shift(
                        indices((None, halo), ALL, ALL)[:n_dims],
                        -comp + dim_offset)])
            elif dim_offset == 2:
                np.testing.assert_array_equal(
                    field.data[comp][shift(
                        indices((-halo, None), interior,
                                (halo - 1, -(halo - 1)))[:n_dims],
                        -comp + dim_offset)], data[comp][shift(
                            indices((None, halo), ALL, ALL)[:n_dims],
                            -comp + dim_offset)])
            elif dim_offset == 0:
                np.testing.assert_array_equal(
                    field.data[comp][shift(
                        indices((-(halo - 1), None), interior,
                                interior)[:n_dims], -comp + dim_offset)],
                    data[comp][shift(
                        indices((None, halo - 1), ALL, ALL)[:n_dims],
                        -comp + dim_offset)])