def test_scalar_2d(halo, n_threads): # arrange data = np.array([[1, 6], [2, 7], [3, 8], [4, 9]], dtype=float) boundary_condition = (Periodic(), Polar(grid=data.shape, longitude_idx=OUTER, latitude_idx=INNER)) field = ScalarField(data, halo, boundary_condition) traversals = Traversals(grid=data.shape, halo=halo, jit_flags=JIT_FLAGS, n_threads=n_threads) field.assemble(traversals) meta_and_data, fill_halos = field.impl sut = traversals._code['fill_halos_scalar'] # pylint:disable=protected-access # act # pylint: disable-next=not-an-iterable for thread_id in numba.prange(n_threads): sut(thread_id, *meta_and_data, *fill_halos) # assert np.testing.assert_array_equal( field.data[halo:-halo, :halo], np.roll(field.get()[:, :halo], data.shape[OUTER] // 2, axis=OUTER)) np.testing.assert_array_equal( field.data[halo:-halo, -halo:], np.roll(field.get()[:, -halo:], data.shape[OUTER] // 2, axis=OUTER))
def test_apply_scalar(n_threads: int, halo: int, grid: tuple, loop: bool): if len(grid) == 1 and n_threads > 1: return cmn = make_commons(grid, halo, n_threads) # arrange sut = cmn.traversals.apply_scalar(loop=loop) out = ScalarField(np.zeros(grid), halo, tuple([Constant(np.nan)] * cmn.n_dims)) out.assemble(cmn.traversals) # act sut(_cell_id_scalar, _cell_id_scalar if loop else None, _cell_id_scalar if loop else None, *out.impl[IMPL_META_AND_DATA], *cmn.vec_null_arg_impl[IMPL_META_AND_DATA], *cmn.vec_null_arg_impl[IMPL_BC], *cmn.scl_null_arg_impl[IMPL_META_AND_DATA], *cmn.scl_null_arg_impl[IMPL_BC], *cmn.scl_null_arg_impl[IMPL_META_AND_DATA], *cmn.scl_null_arg_impl[IMPL_BC], *cmn.scl_null_arg_impl[IMPL_META_AND_DATA], *cmn.scl_null_arg_impl[IMPL_BC], *cmn.scl_null_arg_impl[IMPL_META_AND_DATA], *cmn.scl_null_arg_impl[IMPL_BC]) # assert data = out.get() assert data.shape == grid focus = (-halo, -halo, -halo) for i in range(halo, halo + grid[OUTER]) if cmn.n_dims > 1 else (INVALID_INDEX, ): for j in range( halo, halo + grid[MID3D]) if cmn.n_dims > 2 else (INVALID_INDEX, ): for k in range(halo, halo + grid[INNER]): if cmn.n_dims == 1: ijk = (k, INVALID_INDEX, INVALID_INDEX) elif cmn.n_dims == 2: ijk = (i, k, INVALID_INDEX) else: ijk = (i, j, k) value = cmn.traversals.indexers[ cmn.n_dims].ats[INNER if cmn.n_dims == 1 else OUTER]( focus, data, *ijk) assert (cmn.n_dims if loop else 1) * cell_id(i, j, k) == value assert cmn.scl_null_arg_impl[IMPL_META_AND_DATA][META_AND_DATA_META][ META_HALO_VALID] assert cmn.vec_null_arg_impl[IMPL_META_AND_DATA][META_AND_DATA_META][ META_HALO_VALID] assert not out.impl[IMPL_META_AND_DATA][META_AND_DATA_META][ META_HALO_VALID]
def test_1d_scalar(data, n_threads=1, halo=1): # arrange boundary_conditions = (Extrapolated(), ) field = ScalarField(data, halo, boundary_conditions) traversals = Traversals(grid=field.grid, halo=halo, jit_flags=JIT_FLAGS, n_threads=n_threads) field.assemble(traversals) meta_and_data, fill_halos = field.impl sut = traversals._code['fill_halos_scalar'] # pylint:disable=protected-access # act thread_id = 0 sut(thread_id, *meta_and_data, *fill_halos) # assert print(field.data)
def test_formulae_upwind(): # Arrange psi_data = np.array((0, 1, 0)) flux_data = np.array((0, 0, 1, 0)) options = Options() halo = options.n_halo traversals = Traversals(grid=psi_data.shape, halo=halo, jit_flags=options.jit_flags, n_threads=1) upwind = make_upwind(options=options, non_unit_g_factor=False, traversals=traversals) boundary_conditions = (Periodic(), ) psi = ScalarField(psi_data, halo, boundary_conditions) psi.assemble(traversals) psi_impl = psi.impl flux = VectorField((flux_data, ), halo, boundary_conditions) flux.assemble(traversals) flux_impl = flux.impl # Act with warnings.catch_warnings(): warnings.simplefilter('ignore', category=NumbaExperimentalFeatureWarning) upwind( traversals.null_impl, _Impl(field=psi_impl[IMPL_META_AND_DATA], bc=psi_impl[IMPL_BC]), _Impl(field=flux_impl[IMPL_META_AND_DATA], bc=flux_impl[IMPL_BC]), _Impl(field=traversals.null_impl.scalar[IMPL_META_AND_DATA], bc=traversals.null_impl.scalar[IMPL_BC])) # Assert np.testing.assert_array_equal(psi.get(), np.roll(psi_data, 1))
def test_scalar(data, halo, side, n_threads, dim): n_dims = len(data.shape) if n_dims == 1 and dim != INNER: return if n_dims == 2 and dim == MID3D: return if n_dims == 1 and n_threads > 1: return # arrange field = ScalarField(data, halo, tuple(Periodic() for _ in range(n_dims))) traversals = make_traversals(grid=field.grid, halo=halo, n_threads=n_threads) field.assemble(traversals) meta_and_data, fill_halos = field.impl sut = traversals._code['fill_halos_scalar'] # pylint:disable=protected-access # act for thread_id in range( n_threads): # TODO #96: xfail if not all threads executed? sut(thread_id, *meta_and_data, *fill_halos) # assert interior = (halo, -halo) if side == LEFT: np.testing.assert_array_equal( field.data[shift( indices((None, halo), interior, interior)[:n_dims], dim)], data[shift(indices((-halo, None), ALL, ALL)[:n_dims], dim)]) else: np.testing.assert_array_equal( field.data[shift( indices((-halo, None), interior, interior)[:n_dims], dim)], data[shift(indices((None, halo), ALL, ALL)[:n_dims], dim)])