def test_get_A(self): exp_sm_SoR = self.H2O_TS_sm.get_SoR(T=c.T0('K')) \ - self.H2_sm.get_SoR(T=c.T0('K')) \ - self.O2_sm.get_SoR(T=c.T0('K'))*0.5 exp_sm_A = c.kb('J/K') * c.T0('K') / c.h('J s') * np.exp(-exp_sm_SoR) exp_sm_SoR_rev = self.H2O_TS_sm.get_SoR(T=c.T0('K')) \ - self.H2O_sm.get_SoR(T=c.T0('K')) exp_sm_A_rev = c.kb('J/K') * c.T0('K') / c.h('J s') * np.exp( -exp_sm_SoR_rev) self.assertAlmostEqual(self.rxn_sm.get_A(T=c.T0('K')), exp_sm_A) self.assertAlmostEqual(self.rxn_sm.get_A(T=c.T0('K'), rev=True), exp_sm_A_rev)
def __init__(self, A_st=None, atoms=None, symmetrynumber=None, inertia=None, geometry=None, vib_energies=None, potentialenergy=None, **kwargs): super().__init__(atoms=atoms, symmetrynumber=symmetrynumber, geometry=geometry, vib_energies=vib_energies, potentialenergy=potentialenergy, **kwargs) self.A_st = A_st self.atoms = atoms self.geometry = geometry self.symmetrynumber = symmetrynumber self.inertia = inertia self.etotal = potentialenergy self.vib_energies = vib_energies self.theta = np.array(vib_energies) / c.kb('eV/K') self.zpe = sum(np.array(vib_energies)/2.) *\ c.convert_unit(from_='eV', to='kcal')*c.Na if np.sum(vib_energies) != 0: self.q_vib = np.product( np.divide(1, (1 - np.exp(-self.theta / c.T0('K'))))) if self.phase == 'G': if self.inertia is not None: self.I3 = self.inertia else: self.I3 = atoms.get_moments_of_inertia() *\ c.convert_unit(from_='A2', to='m2') *\ c.convert_unit(from_='amu', to='kg') self.T_I = c.h('J s')**2 / (8 * np.pi**2 * c.kb('J/K')) if self.phase == 'G': Irot = np.max(self.I3) if self.geometry == 'nonlinear': self.q_rot = np.sqrt(np.pi*Irot)/self.symmetrynumber *\ (c.T0('K')/self.T_I)**(3./2.) else: self.q_rot = (c.T0('K') * Irot / self.symmetrynumber) / self.T_I else: self.q_rot = 0. if self.A_st is not None: self.MW = mw(self.elements) * c.convert_unit(from_='g', to='kg') / c.Na self.q_trans2D = self.A_st * (2 * np.pi * self.MW * c.kb('J/K') * c.T0('K')) / c.h('J s')**2
def setUp(self): unittest.TestCase.setUp(self) H2_thermo = BaseThermo(name='H2', phase='G', elements={'H': 2}, thermo_model=IdealGasThermo, T_ref=c.T0('K'), HoRT_ref=0., vib_energies=np.array([4306.1793]) * c.c('cm/s') * c.h('eV s'), potentialenergy=-6.7598, geometry='linear', symmetrynumber=2, spin=0, atoms=molecule('H2')) H2O_thermo = BaseThermo( name='H2O', phase='G', elements={ 'H': 2, 'O': 1 }, thermo_model=IdealGasThermo, T_ref=c.T0('K'), HoRT_ref=-241.826 / (c.R('kJ/mol/K') * c.T0('K')), vib_energies=np.array([3825.434, 3710.264, 1582.432]) * c.c('cm/s') * c.h('eV s'), potentialenergy=-14.2209, geometry='nonlinear', symmetrynumber=2, spin=0, atoms=molecule('H2O')) O2_thermo = BaseThermo(name='H2O', phase='G', elements={'O': 2}, thermo_model=IdealGasThermo, T_ref=c.T0('K'), HoRT_ref=0., vib_energies=np.array([2205.]) * c.c('cm/s') * c.h('eV s'), potentialenergy=-9.86, geometry='linear', symmetrynumber=2, spin=1, atoms=molecule('O2')) self.references = References( references=[H2_thermo, H2O_thermo, O2_thermo])
def get_SoR(self, T, P=c.P0('bar')): """Calculates the dimensionless entropy :math:`\\frac{S^{trans}}{R}=1+\\frac{n_{degrees}}{2}+\\log\\bigg(\\big( \\frac{2\\pi mk_bT}{h^2})^\\frac{n_{degrees}}{2}\\frac{RT}{PN_a}\\bigg)` Parameters ---------- T : float Temperature in K P : float, optional Pressure (bar) or pressure-like quantity. Default is atmospheric pressure Returns ------- SoR_trans : float Translational dimensionless entropy """ V = self.get_V(T=T, P=P) unit_mass = self.molecular_weight *\ c.convert_unit(from_='g', to='kg')/c.Na return 1. + float(self.n_degrees)/2. \ + np.log((2.*np.pi*unit_mass*c.kb('J/K')*T/c.h('J s')**2) ** (float(self.n_degrees)/2.)*V/c.Na)
def _get_SoR_RRHO(self, T, vib_inertia): """Calculates the dimensionless RRHO contribution to entropy Parameters ---------- T : float Temperature in K vib_inertia : float Vibrational inertia in kg m2 Returns ------- SoR_RHHO : float Dimensionless entropy of Rigid Rotor Harmonic Oscillator """ return 0.5 + np.log( (8. * np.pi**3 * vib_inertia * c.kb('J/K') * T / c.h('J s')**2)** 0.5)
def get_A(self, T=c.T0('K'), rev=False, **kwargs): """Gets pre-exponential factor between reactants (or products) and transition state in 1/s Parameters ---------- rev : bool, optional Reverse direction. If True, uses products as initial state instead of reactants. Default is False T : float, optional Temperature in K. Default is standard temperature. kwargs : keyword arguments Parameters required to calculate pre-exponential factor Returns ------- A : float Pre-exponential factor """ return c.kb('J/K')*T/c.h('J s')\ *np.exp(-self.get_SoR_act(rev=rev, T=c.T0('K'), **kwargs))
def set_vib_wavenumber(value, output_structure): """Parses element header and assigns to output_structure['vib_energies'] Parameters ---------- value : float Vibrational frequency in 1/cm output_structure : dict Structure to assign value. Will assign to output_structure['elements'][element] Returns ------- output_structure: dict output_structure with new vibration added """ vib_energy = value * c.c('cm/s') * c.h('eV s') try: output_structure['vib_energies'].append(vib_energy) except (NameError, KeyError): output_structure['vib_energies'] = [vib_energy] return output_structure
def get_q(self, T, P=c.P0('bar')): """Calculates the partition function :math:`q_{trans} = \\bigg(\\frac{2\\pi \\sum_{i}^{atoms}m_ikT}{h^2} \\bigg)^\\frac {n_{degrees}} {2}V` Parameters ---------- T : float Temperature in K P : float, optional Pressure (bar) or pressure-like quantity. Default is atmospheric pressure Returns ------- q_trans : float Translational partition function """ V = self.get_V(T=T, P=P) unit_mass = self.molecular_weight *\ c.convert_unit(from_='g', to='kg')/c.Na return V*(2*np.pi*c.kb('J/K')*T*unit_mass/c.h('J s')**2) \ ** (float(self.n_degrees)/2.)
def test_h(self): self.assertEqual(c.h('J s', bar=False), 6.626070040e-34) self.assertEqual(c.h('J s', bar=True), 6.626070040e-34 / (2. * np.pi)) with self.assertRaises(KeyError): c.h('arbitrary unit')