示例#1
0
    def __init__(self,
                 params,
                 output_file,
                 output_extra_params=[],
                 nlive=None,
                 num_repeats=None,
                 do_clustering=None,
                 read_resume=None,
                 **kwargs):

        super().__init__(**arguments(exclude=['params']))

        self.sampled = params.find_sampled()

        settings = self.settings = PolyChordSettings(
            len(self.sampled), len(self.output_extra_params))
        output_file = './' + osp.normpath(output_file)
        settings.base_dir = osp.dirname(output_file)
        settings.file_root = osp.basename(output_file)
        if mpi.is_master() and not osp.exists(self.settings.base_dir):
            os.makedirs(self.settings.base_dir)
        for k in ['nlive', 'num_repeats', 'do_clustering', 'read_resume']:
            v = arguments()[k]
            if v is not None:
                setattr(settings, k, v)
    return result, []


def prior(hypercube):
    """ Priors for each parameter. """
    theta = [0.0] * nDims
    for i, x in enumerate(hypercube):
        theta[i] = priordict[parnames[i]].ppf(x)

    return theta


# Define PolyChord settings
settings = PolyChordSettings(
    nDims,
    nDerived,
)
settings.do_clustering = args_params.noclust
settings.nlive = nDims * args_params.nlive
settings.base_dir = base_dir
settings.file_root = 'hd40307_k{}'.format(nplanets)  # modelpath[12:-3]
settings.num_repeats = nDims * args_params.nrep
settings.precision_criterion = args_params.prec
settings.read_resume = False

# Change settings if resume is true
if args_params.resume:
    settings.read_resume = args_params.resume
    settings.base_dir = dirname + prev_run

# Run PolyChord
示例#3
0

# Filepath for the polychord data and storing the samples
dirname = filepath
if args_params.cluster:
    dirname = '/scratch/nunger/nathan'
timecode = time.strftime("%m%d_%H%M")
folder_path = 'saved_runs/nathan_model{}_'.format(model) + timecode
if not args_params.save:
    # Save the samples in a dump folder if the data shouldn't be saved
    # This overwrites any data saved before of the same model
    folder_path = 'dump'

# Define PolyChord settings
settings = PolyChordSettings(
    nDims,
    nDerived,
)
settings.do_clustering = args_params.noclust
settings.nlive = nDims * args_params.nlive
settings.base_dir = os.path.join(dirname, folder_path)
settings.file_root = 'nathan_model{}'.format(model)
settings.num_repeats = nDims * args_params.nrep
settings.precision_criterion = args_params.prec
settings.read_resume = False

# Change settings if resume is true
# if args_params.resume:
#     settings.read_resume = args_params.resume
#     settings.base_dir = dirname+prev_run

# Save Parameter names list
示例#4
0
    theta = [0.0] * nDims
    for i, x in enumerate(hypercube):
        theta[i] = priordict[parnames[i]].ppf(x)

    return theta


dirname = '/scratch/nunger/eprv3'
timecode = time.strftime("%m%d_%H%M")
folder_path = '000{}_{}a_'.format(datafile, nplanets) + timecode
if args_params.narrow:
    folder_path = '000{}_{}b_'.format(datafile, nplanets) + timecode

# Define PolyChord settings
settings = PolyChordSettings(
    nDims,
    nDerived,
)
settings.do_clustering = not args_params.noclust
settings.nlive = args_params.nlive
settings.num_repeats = nDims * args_params.nrep

settings.base_dir = dirname + '/chains/'
if args_params.save:
    # Save all the files from this run
    settings.base_dir = dirname + '/saved_runs/' + folder_path
print(settings.base_dir)
settings.file_root = 'eprv3'
settings.read_resume = False
settings.write_resume = False
settings.precision_criterion = args_params.prec
示例#5
0
    def initialise(self):
        """Imports the PolyChord sampler and prepares its arguments."""
        if not get_mpi_rank():  # rank = 0 (MPI master) or None (no MPI)
            self.log.info("Initializing")
        # If path not given, try using general path to modules
        path_to_installation = get_path_to_installation()
        if not self.path and path_to_installation:
            self.path = os.path.join(path_to_installation, "code",
                                     pc_repo_name)
        if self.path:
            if not get_mpi_rank():
                self.log.info("Importing *local* PolyChord from " + self.path)
            pc_py_path = os.path.join(self.path, "PyPolyChord")
            pc_build_path = os.path.join(self.path, "build")
            post = next(d for d in os.listdir(pc_build_path)
                        if d.startswith("lib."))
            pc_build_path = os.path.join(pc_build_path, post)
            if not os.path.exists(pc_build_path):
                self.log.error(
                    "Either PolyChord is not in the given folder, "
                    "'%s', or you have not compiled it.", self.path)
                raise HandledException
            # Inserting the previously found path into the list of import folders
            sys.path.insert(0, pc_build_path)
            sys.path.insert(0, pc_py_path)
        else:
            self.log.info("Importing *global* PolyChord.")
        try:
            import PyPolyChord as PyPolyChord
            from PyPolyChord.settings import PolyChordSettings
        except ImportError:
            self.log.error(
                "Couldn't find the PolyChord python interface. "
                "Make sure that you have compiled it, and that you either\n"
                " (a) specify a path (you didn't) or\n"
                " (b) install the Python interface globally with\n"
                "     '/path/to/PolyChord/python setup.py install --user'")
            raise HandledException
        self.pc = PyPolyChord
        # Prepare arguments and settings
        self.nDims = self.prior.d()
        self.nDerived = (len(self.parametrization.derived_params()) + 1 +
                         len(self.likelihood._likelihoods))
        self.pc_settings = PolyChordSettings(self.nDims, self.nDerived)
        for p in [
                "nlive", "num_repeats", "nprior", "do_clustering",
                "precision_criterion", "max_ndead", "boost_posterior",
                "feedback", "update_files", "posteriors", "equals",
                "cluster_posteriors", "write_resume", "read_resume",
                "write_stats", "write_live", "write_dead", "base_dir",
                "grade_frac", "grade_dims"
        ]:
            v = getattr(self, p)
            if v is not None:
                setattr(self.pc_settings, p, v)
        # Fill the automatic ones
        if getattr(self, "feedback", None) is None:
            values = {
                logging.CRITICAL: 0,
                logging.ERROR: 0,
                logging.WARNING: 0,
                logging.INFO: 1,
                logging.DEBUG: 2
            }
            self.pc_settings.feedback = values[self.log.getEffectiveLevel()]
        try:
            output_folder = getattr(self.output, "folder")
            output_prefix = getattr(self.output, "prefix") or "pc"
        except AttributeError:
            # dummy output -- no resume!
            from tempfile import gettempdir
            output_folder = gettempdir()
            from random import random
            output_prefix = hex(int(random() * 16**6))[2:]
            self.pc_settings.read_resume = False
        self.pc_settings.base_dir = os.path.join(output_folder,
                                                 self.pc_settings.base_dir)
        self.pc_settings.file_root = output_prefix
        if not get_mpi_rank():
            # Creating output folder, if it does not exist (just one process)
            if not os.path.exists(self.pc_settings.base_dir):
                os.makedirs(self.pc_settings.base_dir)
            # Idem, a clusters folder if needed -- notice that PolyChord's default
            # is "True", here "None", hence the funny condition below
            if self.pc_settings.do_clustering is not False:  # None here means "default"
                try:
                    os.makedirs(
                        os.path.join(self.pc_settings.base_dir, clusters))
                except OSError:  # exists!
                    pass
            self.log.info("Storing raw PolyChord output in '%s'.",
                          self.pc_settings.base_dir)
        # explotining the speed hierarchy
        # sort blocks by paramters order and check contiguity (required by PolyChord!!!)
#        speeds, blocks = zip(*self.likelihood.speed_blocked_params(as_indices=True))
#        speeds, blocks = np.array(speeds), np.array(blocks)
# weird behaviour of np.argsort with there is only 1 block
#        if len(blocks) > 1:
#            sorting_indices = np.argsort(blocks, axis=0)
#        else:
#            sorting_indices = [0]
#        speeds, blocks = speeds[sorting_indices], blocks[sorting_indices]
#        if np.all([np.all(block==range(block[0], block[-1]+1)) for block in blocks]):
        self.log.warning("Speed hierarchy exploitation disabled for now!")
        #            self.pc_args["grade_frac"] = list(speeds)
        #            self.pc_args["grade_dims"] = [len(block) for block in blocks]
        #            self.log.info("Exploiting a speed hierarchy with speeds %r and blocks %r",
        #                     speeds, blocks)
        #        else:
        #            self.log.warning("Some speed blocks are not contiguous: PolyChord cannot deal "
        #                        "with the speed hierarchy. Not exploting it.")
        # prior conversion from the hypercube
        bounds = self.prior.bounds(
            confidence_for_unbounded=self.confidence_for_unbounded)
        # Check if priors are bounded (nan's to inf)
        inf = np.where(np.isinf(bounds))
        if len(inf[0]):
            params_names = self.prior.names()
            params = [params_names[i] for i in sorted(list(set(inf[0])))]
            self.log.error(
                "PolyChord needs bounded priors, but the parameter(s) '"
                "', '".join(params) + "' is(are) unbounded.")
            raise HandledException
        locs = bounds[:, 0]
        scales = bounds[:, 1] - bounds[:, 0]
        self.pc_prior = lambda x: (locs + np.array(x) * scales).tolist()
        # We will need the volume of the prior domain, since PolyChord divides by it
        self.logvolume = np.log(np.prod(scales))
        # Done!
        if not get_mpi_rank():
            self.log.info("Calling PolyChord with arguments:")
            for p, v in inspect.getmembers(self.pc_settings,
                                           lambda a: not (callable(a))):
                if not p.startswith("_"):
                    self.log.info("  %s: %s", p, v)
    exponent = -1 * np.sum((signal - model(theta, channel))**2) / (2*sigma**2)
    logL = (-N/2.)*np.log(2*np.pi) - N*np.log(sigma) + exponent
    return logL, []


def prior(hypercube):
    " Uniform Prior for [Tmin, Tmax]. "
    theta = [0.0] * nDims
    for i, x in enumerate(hypercube):
        theta[i] = UniformPrior(Tmin, Tmax)(x)

    return theta


settings = PolyChordSettings(nDims, nDerived)
settings.nlive = args_params.nlive * nDims
settings.num_repeats = args_params.nrep * nDims
settings.file_root = 'gregory'
settings.do_clustering = True
settings.read_resume = False

start = time.time()

output = PPC.run_polychord(logLikelihood, nDims, nDerived, settings, prior)

# End time
end = time.time()
Dt = end - start
print(f'\nTotal run time was: {datetime.timedelta(seconds=int(Dt))}')
print(f'\nZ = {np.exp(output.logZ)}')
示例#7
0
    return logL, phi


def prior(hypercube):
    """ Uniform prior from [-1,1]^D. """
#    print 'hypercube=',hypercube
    theta = [0.0] * nDims
    for i, x in enumerate(hypercube):
        theta[i] = UniformPrior(-1, 1)(x)
    
#   print 'theta=',theta
    # yy=raw_input()
    return theta

settings = PolyChordSettings(nDims, nDerived)
settings.file_root = 'fy'
settings.do_clustering = True
settings.feedback=1

settings.base_dir='yyf_mpipoly'

output = PyPolyChord.run_polychord(likelihood, nDims, nDerived, settings, prior)
paramnames = [('p%i' % i, r'\theta_%i' % i) for i in range(nDims)]
paramnames += [('r*', 'r')]
output.make_paramnames_files(paramnames)
# print prior(hypercube)

try:
    import getdist.plots
    import matplotlib.pyplot as plt
示例#8
0
    return result, []


def prior(hypercube):
    """ Uniform Prior for [Tmin, Tmax]. """
    theta = [0.0] * nDims
    for i, x in enumerate(hypercube):
        theta[i] = UniformPrior(Tmin, Tmax)(x)

    return theta


# Define PolyChord settings
settings = PolyChordSettings(
    nDims,
    nDerived,
)
settings.do_clustering = True
settings.nlive = 25 * nDims
settings.file_root = 'multidimensional'
settings.read_resume = False
#settings.num_repeats = nDims * 5

# Run PolyChord
output = PPC.run_polychord(logLikelihood, nDims, nDerived, settings, prior)

print(output.logZs)
print(output.logZerrs)

end = time.time()
print(f'Total run time was: {end-start}')
def PolyChordrun(LogLikelihood,n_dims,n_params,**kwargs):
    """
    Function author: yuanfang
      PolyChord settings

      For full details of nested sampling and PolyChord, please refer to:
      arxiv:1506.00171[astro-ph.IM], 0809.34371[astro-ph]
           

    Parameters
    ----------
    nDims: int
        Dimensionality of the model, i.e. the number of physical parameters.

    nDerived: int
        The number of derived parameters (can be 0).


    Keyword arguments
    -----------------
    nlive: int
        (Default: nDims*25)
        The number of live points.
        Increasing nlive increases the accuracy of posteriors and evidences,
        and proportionally increases runtime ~ O(nlive).

    num_repeats : int
        (Default: nDims*5)
        The number of slice slice-sampling steps to generate a new point.
        Increasing num_repeats increases the reliability of the algorithm.
        Typically
        * for reliable evidences need num_repeats ~ O(5*nDims).
        * for reliable posteriors need num_repeats ~ O(nDims)

    nprior : int
        (Default: nlive)
        The number of prior samples to draw before starting compression.

    do_clustering : boolean
        (Default: True)
        Whether or not to use clustering at run time.

    feedback : {0,1,2,3}
        (Default: 1)
        How much command line feedback to give
        # Degree of feedback to provide
        #-1 | nothing
        # 0 | just header and tail
        # 1 | run time evidences and clustering information
        # 2 | fancy output
        # 3 | verbose

    precision_criterion : float
        (Default: 0.001)
        Termination criterion. Nested sampling terminates when the evidence
        contained in the live points is precision_criterion fraction of the
        total evidence.

    max_ndead : int
        (Default: -1)
        Alternative termination criterion. Stop after max_ndead iterations.
        Set negative to ignore (default).

    boost_posterior : float
        (Default: 0.0)
        Increase the number of posterior samples produced.  This can be set
        arbitrarily high, but you won't be able to boost by more than
        num_repeats
        Warning: in high dimensions PolyChord produces _a lot_ of posterior
        samples. You probably don't need to change this

    posteriors : boolean
        (Default: True)
        Produce (weighted) posterior samples. Stored in <root>.txt.

    equals : boolean
        (Default: True)
        Produce (equally weighted) posterior samples. Stored in
        <root>_equal_weights.txt

    cluster_posteriors : boolean
        (Default: True)
        Produce posterior files for each cluster?
        Does nothing if do_clustering=False.

    write_resume : boolean
        (Default: True)
        Create a resume file.

    read_resume : boolean
        (Default: True)
        Read from resume file.

    write_stats : boolean
        (Default: True)
        Write an evidence statistics file.

    write_live : boolean
        (Default: True)
        Write a live points file.

    write_dead : boolean
        (Default: True)
        Write a dead points file.

    write_dead : boolean
        (Default: True)
        Write a prior points file.

    update_files : int
        (Default: nlive)
        How often to update the files in <base_dir>.

    base_dir : string
        (Default: 'chains')
        Where to store output files.

    file_root : string
        (Default: 'test')
        Root name of the files produced.

    grade_frac : List[float]
        (Default: 1)
        The amount of time to spend in each speed.

    grade_dims : List[int]
        (Default: 1)
        The number of parameters within each speed.
    """    

    try:
        import math
        from numpy import pi, log, sqrt
        import PyPolyChord
        from PyPolyChord.settings import PolyChordSettings
        from PyPolyChord.priors import UniformPrior
    except ImportError:
        print("INFO(Scanner):PyPolyChord module import error.exit...")
        sys.exit() 
    

    # pass settings to  polychord
    nDerived=n_params-n_dims
    settings = PolyChordSettings(n_dims, nDerived)
    # settings.nlive = kwargs.pop('nlive', n_dims*25)
    settings.nlive = kwargs.pop('n_live_points', n_dims*25)
    # settings.num_repeats = kwargs.pop('num_repeats', n_dims*5)
    settings.num_repeats = kwargs.pop('num_repeats', n_dims*2) # proposed by polychord eggbox
    settings.nprior = kwargs.pop('nprior', -1)
    settings.do_clustering = kwargs.pop('do_clustering', True)
    settings.feedback = kwargs.pop('feedback', 1)
    settings.precision_criterion = kwargs.pop('precision_criterion', 0.001)
    settings.max_ndead = kwargs.pop('max_ndead', -1)
    settings.boost_posterior = kwargs.pop('boost_posterior', 0.0)
    settings.posteriors = kwargs.pop('posteriors', True)
    settings.equals = kwargs.pop('equals', True)
    settings.cluster_posteriors = kwargs.pop('cluster_posteriors', True)
    settings.write_resume = kwargs.pop('write_resume', True)
    settings.write_paramnames = kwargs.pop('write_paramnames', False)
    settings.read_resume = kwargs.pop('read_resume', True)
    settings.write_stats = kwargs.pop('write_stats', True)
    settings.write_live = kwargs.pop('write_live', True)
    settings.write_dead = kwargs.pop('write_dead', True)
    settings.write_prior = kwargs.pop('write_prior', True)
    settings.update_files = kwargs.pop('update_files', settings.nlive)
    settings.base_dir = kwargs.pop('base_dir', 'chains')
    settings.file_root = kwargs.pop('file_root', 'test')
    settings.grade_dims = kwargs.pop('grade_dims', [n_dims])
    settings.max_ndead=kwargs.pop('max_ndead ',-1)
    ES=kwargs.pop('ES')
    # settings.grade_frac = kwargs.pop('grade_frac', [1.0]*len(self.grade_dims))

    if kwargs:
        raise TypeError('Unexpected **kwargs in Contours constructor: %r' % kwargs)
    
    # to speed up, set do_clustring = false
    # settings.do_clustering=False 

    def my_prior(hypercube):
        ''' 
        theta: the hypercube for input parameters
        len(theta)=n_dims    
        Get the phiscal parameters from hypercube
        '''
        
        theta=[0.0]*n_dims
        for i,name in enumerate(ES.InPar):
            if ES.InputPar[name][1].lower() == 'flat':
                min = float(ES.InputPar[name][2])
                max = float(ES.InputPar[name][3])
                theta[i] = hypercube[i] * (max - min) + min 
            elif ES.InputPar[name][1].lower() == 'log':
                min = math.log10(float(ES.InputPar[name][2]))
                max = math.log10(float(ES.InputPar[name][3]))
                theta[i] = 10.0**(hypercube[i]*(max - min) + min )
            else:
                sf.ErrorStop( 'Not ready. Only "flat" and "log" prior can be used.' )
#        print 'my_prior: theta=',theta
        return theta
    
    def my_Loglikelihood(theta):
        phi=[0.0]*nDerived
        derived=[0.0]*nDerived
        theta.extend(derived)
        cube=theta
        logL=LogLikelihood(cube,n_dims,n_params)
        # print 'my_Loglikelihood after log',cube
        phi=cube[n_dims:]
#        print 'my loglikelihood: phi=',phi
#        print 'my log likelihood: LogL=',logL
        return logL,phi

        
    output = PyPolyChord.run_polychord(my_Loglikelihood, n_dims, nDerived, settings, my_prior)
                  norm.logpdf(theta, loc2, sigma2))

    return float(result), []


def prior(hypercube):
    """ Uniform Prior for [Tmin, Tmax]. """
    theta = [0.0] * nDims
    for i, x in enumerate(hypercube):
        theta[i] = UniformPrior(Tmin, Tmax)(x)

    return theta


# Define PolyChord settings
settings = PolyChordSettings(nDims, nDerived)
settings.do_clustering = True
settings.nlive = 200
settings.file_root = 'bimodal'
settings.read_resume = False

start = time.time()

# Run PolyChord
output = PPC.run_polychord(logLikelihood, nDims, nDerived, settings, prior)

# End time
end = time.time()
Dt = end - start
print(f'\nTotal run time was: {datetime.timedelta(seconds=int(Dt))}')