def test_liion_dc_connected_dc_sizing(): model = batt.default("GenericBatteryCommercial") model.BatteryCell.batt_chem = 1 model.Inverter.inverter_model = 0 model.Inverter.inv_snl_eff_cec = 50 model.BatterySystem.batt_ac_or_dc = 0 BatteryTools.battery_model_sizing(model, 100, 400, 500) assert (model.BatterySystem.batt_computed_bank_capacity == pytest.approx( 400, 1)) assert (model.BatterySystem.batt_power_discharge_max_kwdc == pytest.approx( 100, 1)) assert (model.BatterySystem.batt_power_charge_max_kwdc == pytest.approx( 100, 1)) assert (model.BatterySystem.batt_power_discharge_max_kwac == pytest.approx( 49, 1)) assert (model.BatterySystem.batt_power_charge_max_kwac == pytest.approx( 204, 1)) assert (model.BatterySystem.batt_current_discharge_max == pytest.approx( 200, 1)) assert (model.BatterySystem.batt_current_charge_max == pytest.approx( 200, 1)) model.Inverter.inv_snl_eff_cec = 100 model.BatterySystem.batt_ac_or_dc = 0 BatteryTools.battery_model_sizing(model, 100, 400, 500) assert (model.BatterySystem.batt_computed_bank_capacity == pytest.approx( 400, 1)) assert (model.BatterySystem.batt_power_discharge_max_kwdc == pytest.approx( 100, 1)) assert (model.BatterySystem.batt_power_charge_max_kwdc == pytest.approx( 100, 1)) assert (model.BatterySystem.batt_power_discharge_max_kwac == pytest.approx( 98, 1)) assert (model.BatterySystem.batt_power_charge_max_kwac == pytest.approx( 102, 1))
def test_leadacid(): model = batt.default("GenericBatteryCommercial") model.BatteryCell.batt_chem = 0 assert (model.BatterySystem.batt_computed_bank_capacity != pytest.approx( 100, .5)) assert (model.BatterySystem.batt_power_charge_max_kwdc != pytest.approx( 50, 0.5)) BatteryTools.battery_model_sizing(model, 100, 400, 500) assert (model.BatterySystem.batt_computed_strings == 261) assert (model.BatterySystem.batt_computed_series == 139) assert (model.BatterySystem.batt_computed_bank_capacity == pytest.approx( 417, 1)) assert (model.BatterySystem.batt_power_charge_max_kwdc == pytest.approx( 96.29, 1))
def test_liion_ac_connected_ac_sizing(): model = batt.default("GenericBatteryCommercial") model.BatteryCell.batt_chem = 1 model.BatterySystem.batt_ac_or_dc = 1 # ac BatteryTools.battery_model_sizing(model, 100, 400, 500) assert (model.BatterySystem.batt_computed_bank_capacity == pytest.approx( 417, 1)) assert (model.BatterySystem.batt_power_discharge_max_kwdc == pytest.approx( 104, 1)) assert (model.BatterySystem.batt_power_charge_max_kwdc == pytest.approx( 96, 1)) assert (model.BatterySystem.batt_power_discharge_max_kwac == pytest.approx( 100, 1)) assert (model.BatterySystem.batt_power_charge_max_kwac == pytest.approx( 100, 1)) assert (model.BatterySystem.batt_current_discharge_max == pytest.approx( 208, 1)) assert (model.BatterySystem.batt_current_charge_max == pytest.approx( 192, 1))
def test_battery_model_change_chemistry(): model = batt.default("GenericBatterySingleOwner") original_capacity = model.value('batt_computed_bank_capacity') original_power = model.BatterySystem.batt_power_discharge_max_kwac BatteryTools.battery_model_change_chemistry(model, 'leadacid') params_new = battstfl.default('leadacid').export() cell_params = params_new['ParamsCell'] pack_params = params_new['ParamsPack'] assert (model.value('batt_computed_bank_capacity') == pytest.approx( original_capacity, 0.1)) assert (model.value('batt_power_discharge_max_kwac') == pytest.approx( original_power, 0.1)) assert (model.BatteryCell.batt_chem == cell_params['chem']) assert (model.BatteryCell.batt_calendar_choice == cell_params['calendar_choice']) assert (model.BatteryCell.batt_Vnom_default == cell_params['Vnom_default']) assert ( model.BatteryCell.LeadAcid_q10_computed == cell_params['leadacid_q10']) assert (model.BatteryCell.batt_Cp == pack_params['Cp']) BatteryTools.battery_model_change_chemistry(model, 'nmcgraphite') params_new = battstfl.default('nmcgraphite').export() cell_params = params_new['ParamsCell'] pack_params = params_new['ParamsPack'] assert (model.value('batt_computed_bank_capacity') == pytest.approx( original_capacity, 0.1)) assert (model.value('batt_power_discharge_max_kwac') == pytest.approx( original_power, 0.1)) assert (model.BatteryCell.batt_C_rate == cell_params['C_rate']) assert (model.BatteryCell.batt_calendar_choice == cell_params['calendar_choice']) assert (model.BatteryCell.batt_Vexp == cell_params['Vexp']) assert (model.BatteryCell.batt_Cp == pack_params['Cp'])
Additional financial models, inputs, and outputs can be found at https://nrel-pysam.readthedocs.io/en/master/modules/Battery.html Most recently tested against PySAM 2.2.3 @author: brtietz """ import PySAM.Battery as battery_model analysis_period = 1 # years steps_in_year = 8760 # currently hours in year, multiply this for subhourly tests (example * 12 for 5 minute tests) days_in_year = 365 # Create the model using PySAM's defaults battery = battery_model.default("GenericBatterySingleOwner") # Set up inputs needed by the model. battery.BatteryCell.batt_room_temperature_celsius = [20] * (steps_in_year * analysis_period) # degrees C, room temperature. Would normally come from weather file # 24 hours of data to duplicate for the test. Would need to add data here for subhourly lifetime_generation = [] lifetime_dispatch = [] daily_generation = [0, 0, 0, 0, 0, 0, 0, 200, 400, 600, 800, 1000, 1000, 1000, 1000, 800, 600, 400, 200, 0, 0, 0, 0, 0] # kW daily_dispatch = [0, 0, 0, 0, 0, 0, 0, -200, -400, -600, -800, -1000, -1000, 0, 0, 200, 400, 600, 800, 1000, 1000, 0, 0, 0] # kW, negative is charging # Extend daily lists for entire analysis period for i in range(0, days_in_year * analysis_period): lifetime_generation.extend(daily_generation) lifetime_dispatch.extend(daily_dispatch)