示例#1
0
class FileReader(QWidget):
    def __init__(self):
        super().__init__()
        self.__logger = Logger()
        self.__file_dialog = QFileDialog()

        self.__logger.info('FileReader was successfully initialized.',
                           __name__)

    def _detect_encoding(self, filename):
        with open(filename, 'rb') as byte_file:
            byte_string = byte_file.read()

        encoding = chardet.detect(byte_string)['encoding']

        self.__logger.info(f"File's encoding: {encoding}", __name__)

        return encoding

    def get_file_content(self):
        try:
            filename = self.__file_dialog.getOpenFileName(
                self, 'Open file', '/home')[0]
            self.__logger.info(f'Filename: {filename}', __name__)

            if filename:
                with open(filename,
                          'r',
                          encoding=self._detect_encoding(filename)) as file:
                    return file.read()

        except BaseException as exception:
            self.__logger.error(str(exception), __name__)
class SpeechRecognizer:
    def __init__(self):
        # Services
        self.__recognizer = sr.Recognizer()
        self.__logger = Logger()
        self._exceptions_handler = ExceptionsHandler()

        self.__logger.info('SpeechRecognizer was successfully initialized.', __name__)

    def recognize_speech(self):
        while True:
            try:
                with sr.Microphone() as source:
                    speech = self.__recognizer.listen(source)

            except BaseException as exception:
                error_message = self._exceptions_handler.get_error_message(exception)

                self.__logger.error(error_message, __name__)
                return error_message

            try:
                text = self.__recognizer.recognize_google(speech, language="ru-RU").lower().strip()
                return text

            except BaseException as exception:
                error_message = self._exceptions_handler.get_error_message(exception)

                if isinstance(exception, sr.WaitTimeoutError):
                    self.__logger.warning(self._exceptions_handler.get_error_message(exception), __name__)
                else:
                    self.__logger.error(error_message, __name__)
                    return error_message
class SpellChecker:
    def __init__(self):
        # Services
        self.__logger = Logger()
        self._exceptions_handler = ExceptionsHandler()

        self.__logger.info('SpellChecker was successfully initialized.',
                           __name__)

    def check_spelling(self, text):
        self.__logger.info(f'Start text: {text}', __name__)

        try:
            response = requests.get(
                'https://speller.yandex.net/services/spellservice.json/checkText',
                params={
                    'text': text
                }).json()

        except BaseException as exception:
            self.__logger.error(
                self._exceptions_handler.get_error_message(exception),
                __name__)
            return text

        for word in response:
            text = text.replace(word['word'], word['s'][0])

        self.__logger.info(f'Checked text: {text}', __name__)
        return text
class DatabaseCursor:
    def __init__(self):
        # Services
        self.__logger = Logger()
        self._path_service = PathService()
        self._configurator = Configurator()
        self._exceptions_handler = ExceptionsHandler()

        # Data
        self._wd = os.getcwd()
        self._request_url = None
        self.databases_public_keys = None

        self.__logger.info('DatabaseCursor was successfully initialized.',
                           __name__)

    def _load_config(self):
        path_to_config = os.path.join(self._path_service.path_to_configs,
                                      'database_cursor.json')

        if os.path.exists(path_to_config):
            with open(path_to_config, 'r', encoding='utf-8') as file:
                config = json.load(file)

            self._request_url = config['request_url']
            self.databases_public_keys = config['database_public_keys']
        else:
            self.__logger.error(
                "Can't load config for DatabaseCursor (doesn't exist).",
                __name__)

    def __update_connection(self, ngram):
        path_to_db = None

        if ngram.count(' ') == 0:
            path_to_db = self._path_service.get_path_to_database('unigrams.db')

        elif ngram.count(' ') == 1:
            path_to_db = self._path_service.get_path_to_database('bigrams.db')

        elif ngram.count(' ') == 2:
            path_to_db = self._path_service.get_path_to_database('trigrams.db')

        if path_to_db and os.path.exists(path_to_db):
            self.__logger.info(f'Connected to database: {path_to_db}',
                               __name__)

            return sqlite3.connect(path_to_db)

        else:
            self.__logger.warning(f'Database lost: {path_to_db}', __name__)
            self.__logger.info('Trying to download database from cloud...',
                               __name__)

            self._configurator.download_database(path_to_db)

            self.__logger.info(f'Connected to database: {path_to_db}',
                               __name__)

            if os.path.exists(path_to_db):
                return sqlite3.connect(path_to_db)
            else:
                self.__logger.fatal("Database doesn't exist.", __name__)

    def get_entry(self, ngram):
        connection = self.__update_connection(ngram)
        cursor = connection.cursor()

        request = ("""
        SELECT * FROM 'Data' WHERE Ngram='%s'
        """) % ngram

        self.__logger.info(f'Request to DB: {request.strip()}', __name__)

        try:
            cursor.execute(request)
            self.__logger.info('Request is OK.', __name__)

        except BaseException as exception:
            connection.close()

            self.__logger.error(
                self._exceptions_handler.get_error_message(exception),
                __name__)
            return

        result = cursor.fetchone()
        self.__logger.info(f'Received data: {str(result)}', __name__)

        if result:
            connection.close()

            return result[1], result[2]

        else:
            connection.close()

    def entry_exists(self, ngram):
        connection = self.__update_connection(ngram)
        cursor = connection.cursor()

        request = ("""
        SELECT * FROM 'Data' WHERE Ngram='%s'
        """) % ngram

        self.__logger.info(f'Request to DB: {request.strip()}', __name__)

        try:
            cursor.execute(request)
            self.__logger.info('Request is OK.', __name__)

        except BaseException as exception:
            connection.close()

            self.__logger.error(
                self._exceptions_handler.get_error_message(exception),
                __name__)
            return

        if cursor.fetchone():
            connection.close()

            self.__logger.info('Entry exists.', __name__)
            return True

        else:
            connection.close()

            self.__logger.info("Entry doesn't exist.", __name__)
            return False
class PathService(metaclass=Singleton):
    def __init__(self):
        # Services
        self.__logger = Logger()

        # Data
        self._wd = os.getcwd()
        self.path_to_databases = None
        self.path_to_configs = None
        self._valid_classifiers = None
        self._valid_model_types = None
        self._valid_databases = None
        self._valid_test_results_modes = None
        self._valid_datasets = None
        self.path_to_stop_words = None
        self._path_to_main_directory = None
        self.path_to_vector_model = None
        self._path_to_classifier_models = None
        self._path_to_test_results = None

        self.configure()
        self.__logger.info('PathService was successfully configured.', __name__)

    def _find_main_directory(self):
        max_nesting_level = 5
        nesting_level = 0

        while not os.getcwd().endswith('Python'):
            if os.getcwd().endswith('Databases'):
                os.chdir(os.path.join('..', 'Python'))
                break
            else:
                os.chdir('..')

            nesting_level += 1

            if nesting_level > max_nesting_level:
                self.__logger.fatal("Can't find main directory (exceeded maximum nesting level).", __name__)
                exit(-1)

        self._path_to_main_directory = os.getcwd()
        self.path_to_configs = os.path.join(self._path_to_main_directory, 'Services', 'Configs')
        self.path_to_databases = os.path.abspath(os.path.join('..', 'Databases'))

        os.chdir(self._wd)

    def _check_paths_existing(self):
        if not os.path.exists(self.path_to_configs):
            self.__logger.fatal("Directory with config files doesn't exist.", __name__)
            exit(-1)

        elif not os.path.exists(self.path_to_databases):
            self.__logger.fatal("Directory with databases doesn't exist.", __name__)
            exit(-1)

        elif not os.path.exists(self._path_to_classifier_models):
            self.__logger.fatal("Directory with classifier models doesn't exist.", __name__)
            exit(-1)

        if not os.path.exists(self.path_to_vector_model):
            self.path_to_vector_model = None
            self.__logger.error("Vector model doesn't exist.", __name__)

        if not os.path.exists(self.path_to_stop_words):
            self.path_to_stop_words = None
            self.__logger.error("File with stop-words doesn't exist.", __name__)

        if not os.path.exists(self._path_to_test_results):
            self._path_to_test_results = None
            self.__logger.warning("Directory with tests reports doesn't exist.", __name__)

    def _load_config(self):
        path_to_config = os.path.join(self.path_to_configs, 'path_service.json')

        if not os.path.exists(path_to_config):
            self.__logger.error("Can't find config-file for PathService.", __name__)

        with open(path_to_config, 'r', encoding='utf-8') as file:
            config = json.load(file)

        self._valid_classifiers = config['valid_classifiers']
        self._valid_databases = config['valid_databases']
        self._valid_datasets = config['valid_datasets']
        self._valid_test_results_modes = config['valid_test_results_modes']
        self._valid_model_types = config['valid_model_types']

    def configure(self):
        self._find_main_directory()
        self._load_config()

        self.path_to_vector_model = os.path.join(self.path_to_databases, 'ruscorpora_upos_skipgram_300_10_2017.bin.gz')
        self.path_to_stop_words = os.path.join(self._path_to_main_directory, 'Services', 'Lemmatizer',
                                               'stop_words.json')
        self._path_to_classifier_models = os.path.join(self.path_to_databases, 'Models')
        self._path_to_test_results = os.path.join(self._path_to_main_directory, 'Tests', 'System', 'Reports')

        self._check_paths_existing()

    def get_path_to_test_results(self, mode='classifier', classifier_name='NBC'):
        if classifier_name not in self._valid_classifiers:
            self.__logger.warning('Got incorrect classifier name.', __name__)
            classifier_name = 'NBC'

        if classifier_name not in self._valid_test_results_modes:
            self.__logger.warning('Got incorrect mode.', __name__)
            return self._path_to_test_results

        if mode.lower().strip() == 'vec_model':
            return os.path.join(self._path_to_test_results, 'VectorModel')

        elif mode.lower().strip() == 'classifier_main':
            return os.path.join(self._path_to_test_results, '..', '..', 'MainReports', 'Classifier', classifier_name)

        elif mode.lower().strip() == 'classifier':
            return self._path_to_test_results

    def get_path_to_model(self, model='unigrams', classifier_name='NBC'):
        if classifier_name not in self._valid_classifiers:
            self.__logger.warning('Got incorrect classifier name.', __name__)
            classifier_name = 'NBC'

        if model not in self._valid_model_types:
            self.__logger.warning('Got incorrect model type.', __name__)
            model = 'unigrams'

        path_to_models = os.path.join(self._path_to_classifier_models, classifier_name)

        if os.path.exists(path_to_models):
            path_to_required_model = os.path.join(path_to_models, f'model_{model}.pkl')

            return path_to_required_model
        else:
            self.__logger.error("Required model wasn't found.", __name__)

    def get_path_to_database(self, database_name='unigrams.db'):
        if database_name not in self._valid_databases:
            self.__logger.warning('Got incorrect database name.', __name__)
            database_name = 'unigrams.db'

        path_to_database = os.path.join(self.path_to_databases, database_name)

        return path_to_database

    def get_path_to_dataset(self, dataset):
        if dataset not in self._valid_datasets:
            self.__logger.warning('Got incorrect dataset name.', __name__)
            dataset = 'dataset_with_unigrams.csv'

        path_to_dataset = os.path.join(self.path_to_databases, dataset)

        return path_to_dataset

    def set_path_to_vector_model(self, path_to_vector_model):
        self.path_to_vector_model = path_to_vector_model
示例#6
0
class NgramAnalyzer:
    def __init__(self):
        # Services
        self._database_cursor = DatabaseCursor()
        self.__logger = Logger()
        self._exceptions_hanlder = ExceptionsHandler()
        self._lemmatizer = Lemmatizer()
        self._path_service = PathService()
        self._configurator = Configurator()
        self._morph_analyzer = pymorphy2.MorphAnalyzer()

        # Data
        self._vec_model = None

        self._load_vec_model()

        self.__logger.info('NgramAnalyzer was successfully initialized.', __name__)

    def _load_vec_model(self):
        if not self._path_service.path_to_vector_model:
            self.__logger.warning("Vector model doesn't exist.", __name__)

            self._configurator.download_vector_model()
            self._path_service.set_path_to_vector_model(os.path.join(self._path_service.path_to_databases,
                                                                     'ruscorpora_upos_skipgram_300_10_2017.bin.gz'))
            self.__logger.info('Vector model was successfully downloaded.', __name__)

        if self._path_service.path_to_vector_model:
            self._vec_model = gensim.models.KeyedVectors.load_word2vec_format(self._path_service.path_to_vector_model,
                                                                              binary=True)
        else:
            self.__logger.error("Vector model doesn't exist.", __name__)

    def _part_of_speech_detect(self, word):
        if not word:
            return

        part_of_speech = self._morph_analyzer.parse(word)[0].tag.POS

        if part_of_speech:
            if re.match(r'ADJ', part_of_speech):
                return 'ADJ'

            elif re.match(r'PRT', part_of_speech):
                return 'PRT'

            elif part_of_speech == 'INFN':
                return 'VERB'

            elif part_of_speech == 'ADVB' or part_of_speech == 'PRED':
                return 'ADV'

            elif part_of_speech == 'PRCL':
                return 'PART'

        return part_of_speech

    @staticmethod
    def _detect_ngram_type(ngram):
        if not ngram:
            return

        if ngram.count(' ') == 0:
            return 'unigram'

        elif ngram.count(' ') == 1:
            return 'bigram'

        elif ngram.count(' ') == 2:
            return 'trigram'

    def _nearest_synonyms_find(self, word, topn):
        if not self._vec_model or not word or topn <= 0:
            return

        nearest_synonyms = list()
        part_of_speech = self._part_of_speech_detect(word)
        ngram_type = self._detect_ngram_type(word)

        if part_of_speech:
            word = word + '_%s' % self._part_of_speech_detect(word)

        try:
            for synonym in self._vec_model.most_similar(positive=[word], topn=topn * 10):
                found_synonym = self._lemmatizer.get_text_initial_form(synonym[0].split('_')[0])

                if found_synonym and self._detect_ngram_type(found_synonym) == ngram_type:
                    nearest_synonyms.append({'word': found_synonym,
                                             'cosine proximity': synonym[1]})

                if len(nearest_synonyms) == topn:
                    break

        except BaseException as exception:
            self.__logger.warning(self._exceptions_hanlder.get_error_message(exception), __name__)
            return

        return nearest_synonyms

    def relevant_ngram_find(self, ngram):
        if not ngram:
            return

        self.__logger.info(f'Start ngram: {ngram}', __name__)

        response = {'synonym_found': False, 'content': dict()}

        if self._detect_ngram_type(ngram) == 'unigram':
            synonyms_count = 10
            nearest_synonyms = self._nearest_synonyms_find(ngram, synonyms_count)

            if not nearest_synonyms:
                return response

            for nearest_synonym in nearest_synonyms:
                data = self._database_cursor.get_entry(nearest_synonym['word'])

                if data and data[0]:
                    self.__logger.info(f'Relevant ngram: {nearest_synonym["word"]}', __name__)

                    response['synonym_found'] = True

                    response['content']['synonym'] = nearest_synonym['word']
                    response['content']['pos_docs'] = data[0]
                    response['content']['neg_docs'] = data[1]

                    return response

        return response
class Configurator(metaclass=Singleton):
    def __init__(self):
        # Services
        self.__logger = Logger()
        self._path_service = PathService()
        self._exceptions_handler = ExceptionsHandler()

        # Data
        self._config = dict()
        self._wd = os.getcwd()
        self._path_to_databases = None
        self._request_url = None
        self._vector_model_public_key = None
        self._databases_public_keys = None

        self._load_public_keys()

        self.__logger.info('Configurator was successfully initialized.',
                           __name__)

    def _load_public_keys(self):
        path_to_config = os.path.join(self._path_service.path_to_configs,
                                      'configurator.json')

        if os.path.exists(path_to_config):
            with open(path_to_config, 'r', encoding='utf-8') as file:
                config = json.load(file)

            self._request_url = config['request_url']
            self._vector_model_public_key = config['vector_model_public_key']
            self._databases_public_keys = config['databases_public_keys']

        else:
            self.__logger.error(
                "Can't load config for Configrurator (doesn't exist).",
                __name__)

    def download_database(self, path_to_db):
        database_name = os.path.split(path_to_db)[1]

        if database_name:
            try:
                download_url = requests.get(
                    self._request_url,
                    params={
                        'public_key':
                        self._databases_public_keys[database_name]
                    }).json()["href"]

                with open(path_to_db, 'wb') as database_file:
                    database_file.write(requests.get(download_url).content)

                self._config[path_to_db] = 'downloaded'

            except BaseException as exception:
                self.__logger.error(
                    self._exceptions_handler.get_error_message(exception),
                    __name__)
                self._config[path_to_db] = 'error'

    def download_vector_model(self):
        self._path_service.set_path_to_vector_model(
            os.path.join(self._path_service.path_to_databases,
                         'ruscorpora_upos_skipgram_300_10_2017.bin.gz'))

        try:
            download_url = requests.get(self._request_url,
                                        params={
                                            'public_key':
                                            self._vector_model_public_key
                                        }).json()["href"]

            with open(self._path_service.path_to_vector_model,
                      'wb') as vec_model:
                vec_model.write(requests.get(download_url).content)

            self._config[
                'ruscorpora_upos_skipgram_300_10_2017.bin.gz'] = 'downloaded'

        except BaseException as exception:
            self.__logger.error(
                self._exceptions_handler.get_error_message(exception),
                __name__)

            self._config[
                'ruscorpora_upos_skipgram_300_10_2017.bin.gz'] = 'error'

    def configure_system(self):
        self._config['datetime'] = str(datetime.now())

        for database in ['unigrams.db', 'bigrams.db', 'trigrams.db']:
            path_to_database = self._path_service.get_path_to_database(
                database)

            if not path_to_database or not os.path.exists(path_to_database):
                self.__logger.warning('Database not found: %s' % str(database),
                                      __name__)
                self.download_database(
                    os.path.join(self._path_service.path_to_databases,
                                 database))
            else:
                self._config[database] = 'exists'

        if not self._path_service.path_to_vector_model or not os.path.exists(
                self._path_service.path_to_vector_model):
            self.__logger.warning('Vector model not found.', __name__)
            self.download_vector_model()
        else:
            self._config[
                'ruscorpora_upos_skipgram_300_10_2017.bin.gz'] = 'exists'

        self._create_config()

    def _create_config(self):
        with open(os.path.join('Logs', 'config.json'), 'w',
                  encoding='utf-8') as config:
            json.dump(self._config, config, indent=4)
示例#8
0
class Classifier:
    def __init__(self):
        # Services
        self.__logger = Logger()
        self._path_service = PathService()
        self._exceptions_handler = ExceptionsHandler()

        # Data
        self._container = ClassificationDataContainer()
        self._possible_classifiers = ['NBC', 'LogisticRegression', 'KNN']

        self.__logger.info('Classifier was successfully initialized.',
                           __name__)

    def _load_config(self):
        path_to_config = os.path.join(self._path_service.path_to_configs,
                                      'classifier.json')

        if os.path.exists(path_to_config):
            with open(path_to_config, 'r', encoding='utf-8') as file:
                config = json.load(file)

            self._possible_classifiers = config['possible_classifiers']
        else:
            self.__logger.error("Can't load Classifier configuration.",
                                __name__)

    def customize(self,
                  unigrams_weight,
                  bigrams_weight,
                  trigrams_weight,
                  classifier_name='NBC'):
        self._container.clear()

        if classifier_name in self._possible_classifiers:
            self._container.classifiers['name'] = classifier_name
        else:
            self._container.classifiers['name'] = 'NBC'
            self.__logger.error('Got unknown classifier, set default (NBC).',
                                __name__)

        self._container.weights['unigrams'] = unigrams_weight
        self._container.weights['bigrams'] = bigrams_weight
        self._container.weights['trigrams'] = trigrams_weight

        try:
            if self._container.weights['unigrams']:
                self._container.classifiers['unigrams'] = joblib.load(
                    self._path_service.get_path_to_model(
                        'unigrams', self._container.classifiers['name']))

            if self._container.weights['bigrams']:
                self._container.classifiers['bigrams'] = joblib.load(
                    self._path_service.get_path_to_model(
                        'bigrams', self._container.classifiers['name']))

            if self._container.weights['trigrams']:
                self._container.classifiers['trigrams'] = joblib.load(
                    self._path_service.get_path_to_model(
                        'trigrams', self._container.classifiers['name']))

            self.__logger.info('Models were successfully loaded.', __name__)
            self.__logger.info('Classifier was successfully configured.',
                               __name__)

        except BaseException as exception:
            self.__logger.fatal(
                self._exceptions_handler.get_error_message(exception),
                __name__)

    def _predict_tonal_by_unigrams(self):
        self._container.tonalities['unigrams'] = self._container.classifiers[
            'unigrams'].predict(self._container.weights['unigrams'])[0]

        self._container.probabilities['unigrams'] = max(
            self._container.classifiers['unigrams'].predict_proba(
                self._container.weights['unigrams'])[0])

        self.__logger.info(
            f'Unigrams tonal: {self._container.tonalities["unigrams"]}',
            __name__)
        self.__logger.info(
            f'Unigrams probability: {self._container.probabilities["unigrams"]}',
            __name__)

    def _predict_tonal_by_unigrams_bigrams(self):
        self._container.tonalities['bigrams'] = self._container.classifiers[
            'bigrams'].predict([[
                self._container.weights['unigrams'],
                self._container.weights['bigrams']
            ]])[0]

        self._container.probabilities['bigrams'] = max(
            self._container.classifiers['bigrams'].predict_proba([[
                self._container.weights['unigrams'],
                self._container.weights['bigrams']
            ]])[0])

        self.__logger.info(
            f'Bigrams tonal: {self._container.tonalities["bigrams"]}',
            __name__)
        self.__logger.info(
            f'Bigrams probability: {self._container.probabilities["bigrams"]}',
            __name__)

    def _predict_tonal_by_unigrams_bigrams_trigrams(self):
        self._container.tonalities['trigrams'] = self._container.classifiers[
            'trigrams'].predict([[
                self._container.weights['unigrams'],
                self._container.weights['bigrams'],
                self._container.weights['trigrams']
            ]])[0]

        self._container.probabilities['trigrams'] = max(
            self._container.classifiers['trigrams'].predict_proba([[
                self._container.weights['unigrams'],
                self._container.weights['bigrams'],
                self._container.weights['trigrams']
            ]])[0])

        self.__logger.info(
            f'Trigrams tonal: {self._container.tonalities["trigrams"]}',
            __name__)
        self.__logger.info(
            f'Trigrams probability: {self._container.probabilities["trigrams"]}',
            __name__)

    def _predict_intermediate_tonalities(self):
        threads = list()

        if self._container.weights['unigrams']:
            threads.append(
                Thread(target=self._predict_tonal_by_unigrams, args=()))

        if self._container.weights['bigrams']:
            threads.append(
                Thread(target=self._predict_tonal_by_unigrams_bigrams,
                       args=()))

        if self._container.weights['trigrams']:
            threads.append(
                Thread(target=self._predict_tonal_by_unigrams_bigrams_trigrams,
                       args=()))

        for thread in threads:
            thread.start()

        for thread in threads:
            while thread.is_alive():
                time.sleep(0.1)

            thread.join()

    def _select_final_tonal(self):
        if self._container.tonalities['unigrams'] and self._container.tonalities['bigrams'] and \
                self._container.tonalities['trigrams']:

            if self._container.tonalities[
                    'unigrams'] == self._container.tonalities['bigrams']:
                self._container.tonalities[
                    'final'] = self._container.tonalities['unigrams']
                self._container.probabilities['final'] = max(
                    self._container.probabilities['unigrams'],
                    self._container.probabilities['bigrams'])

            elif self._container.tonalities[
                    'unigrams'] == self._container.tonalities['trigrams']:
                self._container.tonalities[
                    'final'] = self._container.tonalities['unigrams']
                self._container.probabilities['final'] = max(
                    self._container.probabilities['unigrams'],
                    self._container.probabilities['trigrams'])

            elif self._container.tonalities[
                    'bigrams'] == self._container.tonalities['trigrams']:
                self._container.tonalities[
                    'final'] = self._container.tonalities['bigrams']
                self._container.probabilities['final'] = max(
                    self._container.probabilities['bigrams'],
                    self._container.probabilities['trigrams'])

        elif self._container.tonalities[
                'unigrams'] and self._container.tonalities['bigrams']:

            if self._container.tonalities[
                    'unigrams'] != self._container.tonalities['bigrams']:
                if self._container.probabilities[
                        'unigrams'] >= self._container.probabilities['bigrams']:
                    self._container.tonalities[
                        'final'] = self._container.tonalities['unigrams']
                    self._container.probabilities[
                        'final'] = self._container.probabilities['unigrams']

                else:
                    self._container.tonalities[
                        'final'] = self._container.tonalities['bigrams']
                    self._container.probabilities[
                        'final'] = self._container.probabilities['bigrams']

            elif self._container.tonalities[
                    'unigrams'] == self._container.tonalities['bigrams']:
                self._container.tonalities[
                    'final'] = self._container.tonalities['unigrams']
                self._container.probabilities['final'] = max(
                    self._container.probabilities['bigrams'],
                    self._container.probabilities['unigrams'])

        elif self._container.tonalities['unigrams']:
            self._container.tonalities['final'] = self._container.tonalities[
                'unigrams']
            self._container.probabilities[
                'final'] = self._container.probabilities['unigrams']

    def predict_tonal(self):
        self._predict_intermediate_tonalities()
        self._select_final_tonal()

        self.__logger.info(
            f'Final tonal: {self._container.tonalities["final"]}', __name__)
        self.__logger.info(
            f'Final probability: {self._container.probabilities["final"]}',
            __name__)

        return self._container.tonalities[
            'final'], self._container.probabilities['final']