mapi,mapq,mapu=hp.synfast(spectra[1:],nside,fwhm=0,pixwin=True,new=True) noisei1=np.random.randn(12*nside**2)*sigI noiseq1=np.random.randn(12*nside**2)*sigQU noiseu1=np.random.randn(12*nside**2)*sigQU noisei2=np.random.randn(12*nside**2)*sigI noiseq2=np.random.randn(12*nside**2)*sigQU noiseu2=np.random.randn(12*nside**2)*sigQU allmapsi1[i,:]=mapi[~mask]+noisei1[~mask] allmapsq1[i,:]=mapq[~mask]+noiseq1[~mask] allmapsu1[i,:]=mapu[~mask]+noiseu1[~mask] allmapsi2[i,:]=mapi[~mask]+noisei2[~mask] allmapsq2[i,:]=mapq[~mask]+noiseq2[~mask] allmapsu2[i,:]=mapu[~mask]+noiseu2[~mask] ############ Auto covii=qml.cov_from_maps(allmapsi1,allmapsi1) coviq=qml.cov_from_maps(allmapsi1,allmapsq1) coviu=qml.cov_from_maps(allmapsi1,allmapsu1) covqi=qml.cov_from_maps(allmapsq1,allmapsi1) covqq=qml.cov_from_maps(allmapsq1,allmapsq1) covqu=qml.cov_from_maps(allmapsq1,allmapsu1) covui=qml.cov_from_maps(allmapsu1,allmapsi1) covuq=qml.cov_from_maps(allmapsu1,allmapsq1) covuu=qml.cov_from_maps(allmapsu1,allmapsu1) bigmatmc=np.array([[covii,coviq,coviu],[covqi,covqq,covqu],[covui,covuq,covuu]]) newmatmc=qml.allmat2bigmat(bigmatmc) clf() imshow(np.log10(np.abs(newmatmc)),interpolation='nearest') colorbar() ############ Cross
mask=(np.arange(12*nside**2) >= nbpixok) #### maps simulation nbmc=1000 npix=np.size(where(mask==False)) allmapsi=np.zeros((nbmc,npix)) allmapsq=np.zeros((nbmc,npix)) allmapsu=np.zeros((nbmc,npix)) for i in np.arange(nbmc): pyquad.progress_bar(i,nbmc) mapi,mapq,mapu=hp.synfast(spectra[1:],nside,fwhm=0,pixwin=True,new=True) allmapsi[i,:]=mapi[~mask] allmapsq[i,:]=mapq[~mask] allmapsu[i,:]=mapu[~mask] covii=qml.cov_from_maps(allmapsi,allmapsi) coviq=qml.cov_from_maps(allmapsi,allmapsq) coviu=qml.cov_from_maps(allmapsi,allmapsu) covqi=qml.cov_from_maps(allmapsq,allmapsi) covqq=qml.cov_from_maps(allmapsq,allmapsq) covqu=qml.cov_from_maps(allmapsq,allmapsu) covui=qml.cov_from_maps(allmapsu,allmapsi) covuq=qml.cov_from_maps(allmapsu,allmapsq) covuu=qml.cov_from_maps(allmapsu,allmapsu) clf() subplot(3,3,1) imshow(covii,interpolation='nearest') title('II')