def single_objective_u(): arg = ['u','STA','STC','V2','v1','N_spike','T'] result = ['LQLEP_wPrior','dLQLEP_wPrior','barrier'] vardict = LQLEP_wBarrier( **LQLEP( **thetaM( **linear_reparameterization()))) vardict['dLQLEP_wPrior'] = th.grad(cost = vardict['LQLEP_wPrior'], wrt = vardict['u'], consider_constant = extract( vardict, arg[1:])) print 'Simplifying single objective_u...' sys.stdout.flush() t0 = time.time() inputs, outputs = kolia_theano.simplify( extract(vardict,arg), extract(vardict,result) ) t1 = time.time() print 'done simplifying single objective_u in ', t1-t0, ' sec.' sys.stdout.flush() return inputs, outputs
def _test_LNP( rgc_type='off parasol' ): vardict = LNP( **thetaM( **linear_reparameterization())) init_LNP = LNP_model( init_sv1(rgc_type) ) indices = extract( linear_stats( rgc_type, (5,0) ), ['sparse_index', 'subunit_index'] ) indices['N_subunits'] = len(cones) unknown = extract(init_LNP,['sv1']) train_LNP = global_objective( unknown, extract(init_LNP,['u','V2']), vardict, run=linear_stats( rgc_type, (5,0) ), indices=indices) train_LNP.with_callback(callback) train_LNP.description = 'LNP' sv1 = optimize.optimizer( train_LNP )( init_params=unknown, maxiter=5000, gtol=1e-7 ) model = LNP_model( train_LNP.unflat( sv1 )['sv1'] ) model['LL'] = global_objective( unknown, extract(init_LNP,['u','V2']), vardict, run=linear_stats( rgc_type, (-5,0)), indices=indices).LL(sv1) save(model,'LNP_'+rgc_type) return model
def optimize_LQLEP( rgc_type, filename=None, maxiter=maxiter, indices=None, description='', unknowns=['sv1','V2','u','uc','c','ud','d'], vardict = LQLEP_wBarrier( **LQLEP( **thetaM( **u2c_parameterization())))): # unknowns = {'sv1':sv1, 'V2':init_V2 , 'u':old['u'], 'uc':old['u'], 'c':init_V2} defaults = extract( { 'sv1':init_sv1( rgc_type ), 'V2':init_V2 , 'u':init_u, 'uc':numpy.zeros_like(init_u), 'c':init_V2, 'ud':0.001*numpy.ones_like(init_u), 'd':0.0001+init_V2}, list( set(unknowns).intersection( set(vardict.keys()) ) ) + ['sv1']) if filename is not None: print 'Re-optimizing',filename unknowns = kb.load(filename) for name in unknowns.keys(): if not defaults.has_key(name): del unknowns[name] default(unknowns,defaults) else: unknowns = defaults # if rgc_type[:3] == 'off': # unknowns['u'] = -0.01*numpy.abs(unknowns['u']) if vardict.has_key('barrier_positiveV1'): unknowns['sv1'] = numpy.abs(unknowns['sv1']) else: unknowns['sv1'] = unknowns['sv1']*0.01 train_LQLEP = global_objective( unknowns, {}, vardict, run=linear_stats(rgc_type,( 5,0)), indices=indices) test_LQLEP = global_objective( unknowns, {}, vardict, run=linear_stats(rgc_type,(-5,0)), indices=indices) test_LQLEP.description = 'Test_LQLEP' train_LQLEP.with_callback(partial(callback,other= {'Test_LNP':test_LNP(rgc_type)['LL'], 'nonlinearity':test_LQLEP.nonlinearity}, objectives=[test_LQLEP])) train_LQLEP.description = description+rgc_type unknowns['V2'] = unknowns['V2']*0.001 trained = optimize_objective( train_LQLEP, unknowns, gtol=1e-10 , maxiter=maxiter) print 'RGC type:', rgc_type test_global_objective( train_LQLEP, trained ) train_LQLEP.callback( trained, force=True ) train_LQLEP.callback( train_LQLEP.unflat( trained ), force=True ) return trained