def test_update_rapid_input_file(): """ Checks RAPID input file update with valid input """ print("TEST 2: UPDATE NAMELIST FILE") rapid_manager = RAPID(rapid_executable_location=RAPID_EXE_PATH, cygwin_bin_location=CYGWIN_BIN_PATH, use_all_processors=True, ) rapid_manager.update_parameters(rapid_connect_file='rapid_connect.csv', Vlat_file='m3_riv.nc', riv_bas_id_file='riv_bas_id.csv', k_file='k.csv', x_file='x.csv', Qout_file='Qout.nc' ) original_input_file = os.path.join(INPUT_DATA_PATH, "rapid_namelist_valid") updated_input_file = os.path.join(OUTPUT_DATA_PATH, "rapid_namelist-UPDATE") copy(original_input_file, updated_input_file) rapid_manager.update_namelist_file(updated_input_file) updated_input_file_solution = os.path.join(COMPARE_DATA_PATH, "rapid_namelist-UPDATE") ok_(fcmp(updated_input_file, updated_input_file_solution)) remove_files(updated_input_file)
def test_download_usgs_daily_avg(): """ This tests downloading USGS daily avg data """ print("TEST 12: TEST DOWNLOAD USGS DAILY AVERAGE DATA") out_streamflow_file = os.path.join(OUTPUT_DATA_PATH, "gage_streamflow.csv") out_stream_id_file = os.path.join(OUTPUT_DATA_PATH, "gage_rivid.csv") rapid_manager = RAPID(rapid_executable_location=RAPID_EXE_PATH, cygwin_bin_location=CYGWIN_BIN_PATH) rapid_manager.generate_usgs_avg_daily_flows_opt( reach_id_gage_id_file=os.path.join(INPUT_DATA_PATH, "usgs_gage_id_rivid.csv"), start_datetime=datetime(2000, 1, 1), end_datetime=datetime(2000, 1, 3), out_streamflow_file=out_streamflow_file, out_stream_id_file=out_stream_id_file) compare_streamflow_file = os.path.join(COMPARE_DATA_PATH, "gage_streamflow.csv") assert (compare_csv_decimal_files(out_streamflow_file, compare_streamflow_file, header=False)) compare_stream_id_file = os.path.join(COMPARE_DATA_PATH, "gage_rivid.csv") assert (compare_csv_decimal_files(out_stream_id_file, compare_stream_id_file, header=False)) remove_files(out_streamflow_file, out_stream_id_file)
def test_generate_rapid_input_file(): """ Checks RAPID input file generation with valid input """ print("TEST 1: GENERATE NAMELIST FILE") rapid_manager = RAPID(rapid_executable_location=RAPID_EXE_PATH, cygwin_bin_location=CYGWIN_BIN_PATH, use_all_processors=True, ZS_TauR = 24*3600, #duration of routing procedure (time step of runoff data) ZS_dtR = 15*60, #internal routing time step ZS_TauM = 12*24*3600, #total simulation time ZS_dtM = 24*3600 #input time step ) rapid_manager.update_parameters(rapid_connect_file='rapid_connect.csv', Vlat_file='m3_riv.nc', riv_bas_id_file='riv_bas_id.csv', k_file='k.csv', x_file='x.csv', Qout_file='Qout.nc' ) generated_input_file = os.path.join(OUTPUT_DATA_PATH, "rapid_namelist-GENERATE") rapid_manager.generate_namelist_file(generated_input_file) generated_input_file_solution = os.path.join(COMPARE_DATA_PATH, "rapid_namelist-GENERATE") ok_(fcmp(generated_input_file, generated_input_file_solution)) remove_files(generated_input_file)
def test_download_usgs_daily_avg(): """ This tests downloading USGS daily avg data """ print("TEST 12: TEST DOWNLOAD USGS DAILY AVERAGE DATA") out_streamflow_file=os.path.join(OUTPUT_DATA_PATH,"gage_streamflow.csv") out_stream_id_file=os.path.join(OUTPUT_DATA_PATH,"gage_rivid.csv") rapid_manager = RAPID(rapid_executable_location=RAPID_EXE_PATH, cygwin_bin_location=CYGWIN_BIN_PATH) rapid_manager.generate_usgs_avg_daily_flows_opt(reach_id_gage_id_file=os.path.join(INPUT_DATA_PATH,"usgs_gage_id_rivid.csv"), start_datetime=datetime(2000,1,1), end_datetime=datetime(2000,1,3), out_streamflow_file=out_streamflow_file, out_stream_id_file=out_stream_id_file) compare_streamflow_file=os.path.join(COMPARE_DATA_PATH,"gage_streamflow.csv") ok_(compare_csv_decimal_files(out_streamflow_file, compare_streamflow_file, header=False)) compare_stream_id_file=os.path.join(COMPARE_DATA_PATH,"gage_rivid.csv") ok_(compare_csv_decimal_files(out_stream_id_file, compare_stream_id_file, header=False)) remove_files(out_streamflow_file, out_stream_id_file)
def test_generate_qinit_file(): """ This tests the qinit file function to create an input qinit file for RAPID """ print("TEST 11: TEST GENERATE QINIT FILE") rapid_manager = RAPID(rapid_executable_location=RAPID_EXE_PATH, cygwin_bin_location=CYGWIN_BIN_PATH, rapid_connect_file=os.path.join( INPUT_DATA_PATH, 'rapid_connect.csv')) #test with original rapid outpur input_qout_file = os.path.join(COMPARE_DATA_PATH, 'Qout_nasa_lis_3hr_20020830.nc') original_qout_file = os.path.join(OUTPUT_DATA_PATH, 'Qout_nasa_lis_3hr_20020830.nc') copy(input_qout_file, original_qout_file) qinit_original_rapid_qout = os.path.join(OUTPUT_DATA_PATH, 'qinit_original_rapid_qout.csv') rapid_manager.update_parameters(Qout_file=original_qout_file) rapid_manager.generate_qinit_from_past_qout( qinit_file=qinit_original_rapid_qout) qinit_original_rapid_qout_solution = os.path.join( COMPARE_DATA_PATH, 'qinit_original_rapid_qout.csv') ok_( compare_csv_decimal_files(qinit_original_rapid_qout, qinit_original_rapid_qout_solution, header=False)) #test with CF rapid output and alternate time index cf_input_qout_file = os.path.join(COMPARE_DATA_PATH, 'Qout_nasa_lis_3hr_20020830_CF.nc') cf_qout_file = os.path.join(OUTPUT_DATA_PATH, 'Qout_nasa_lis_3hr_20020830_CF.nc') copy(cf_input_qout_file, cf_qout_file) qinit_cf_rapid_qout = os.path.join(OUTPUT_DATA_PATH, 'qinit_cf_rapid_qout.csv') rapid_manager.update_parameters(Qout_file=cf_qout_file) rapid_manager.generate_qinit_from_past_qout(qinit_file=qinit_cf_rapid_qout, time_index=5) qinit_cf_rapid_qout_solution = os.path.join(COMPARE_DATA_PATH, 'qinit_cf_rapid_qout.csv') ok_( compare_csv_decimal_files(qinit_cf_rapid_qout, qinit_cf_rapid_qout_solution, header=False)) remove_files(original_qout_file, qinit_original_rapid_qout, cf_qout_file, qinit_cf_rapid_qout)
def test_convert_file_to_be_cf_compliant_new_format_comid_lat_lon_z(): """ Test Convert RAPID Output to be CF Compliant for new format with COMID_LAT_LON_Z """ print( "TEST 8: TEST CONVERT RAPID OUTPUT TO CF COMPLIANT (COMID_LAT_LON_Z)") input_qout_file = os.path.join(COMPARE_DATA_PATH, 'Qout_nasa_lis_3hr_20020830.nc') temp_qout_file = os.path.join( OUTPUT_DATA_PATH, 'Qout_nasa_lis_3hr_20020830_test_cf_lat_lon_z.nc') copy(input_qout_file, temp_qout_file) rapid_manager = RAPID(rapid_executable_location=RAPID_EXE_PATH, cygwin_bin_location=CYGWIN_BIN_PATH, Qout_file=temp_qout_file, rapid_connect_file=os.path.join( INPUT_DATA_PATH, 'rapid_connect.csv'), ZS_TauR=3 * 3600) rapid_manager.make_output_cf_compliant( simulation_start_datetime=datetime(2002, 8, 30), comid_lat_lon_z_file=os.path.join(INPUT_DATA_PATH, 'comid_lat_lon_z.csv'), project_name= "ERA Interim (T511 Grid) 3 Hourly Runoff Based Historical flows by US Army ERDC" ) cf_qout_file_solution = os.path.join(COMPARE_DATA_PATH, 'Qout_nasa_lis_3hr_20020830_CF.nc') #check Qout assert (compare_qout_files(temp_qout_file, cf_qout_file_solution)) #check other info in netcdf file d1 = Dataset(temp_qout_file) d2 = Dataset(cf_qout_file_solution) # MPG: new dimensions have been introduced in RAPID. We only test for those # included in the original benchmarks. for dim in ['time', 'rivid']: assert (dim in d1.dimensions.keys()) # MPG: new variables have been introduced in RAPID. We only test for those # included in the original benchmarks. for v in [u'Qout', u'rivid', u'time', u'lon', u'lat', u'crs']: assert (v in d1.variables.keys()) assert ((d1.variables['time'][:] == d2.variables['time'][:]).all()) assert ((d1.variables['rivid'][:] == d2.variables['rivid'][:]).all()) assert ((d1.variables['lat'][:] == d2.variables['lat'][:]).all()) assert ((d1.variables['lon'][:] == d2.variables['lon'][:]).all()) d1.close() d2.close() remove_files(temp_qout_file)
def test_update_rapid_numbers_input_file(): """ Checks RAPID input file update with number validation """ print("TEST 4: GENERATE NUMBERS FOR NAMELIST FILE") rapid_manager = RAPID( rapid_executable_location=RAPID_EXE_PATH, cygwin_bin_location=CYGWIN_BIN_PATH, use_all_processors=True, rapid_connect_file=os.path.join(INPUT_DATA_PATH, 'rapid_connect.csv'), riv_bas_id_file=os.path.join(INPUT_DATA_PATH, 'riv_bas_id.csv'), ) rapid_manager.update_reach_number_data() rapid_manager.update_parameters(rapid_connect_file='rapid_connect.csv', Vlat_file='m3_nasa_lis_3hr_20020830.nc', riv_bas_id_file='riv_bas_id.csv', k_file='k.csv', x_file='x.csv', Qout_file='Qout.nc') generated_input_file = os.path.join(OUTPUT_DATA_PATH, "rapid_namelist-GENERATE-NUMBERS") rapid_manager.generate_namelist_file(generated_input_file) generated_input_file_solution = os.path.join( COMPARE_DATA_PATH, "rapid_namelist-GENERATE-NUMBERS") assert (fcmp(generated_input_file, generated_input_file_solution)) remove_files(generated_input_file)
def test_convert_file_to_be_cf_compliant_original_format(): """ Test Convert RAPID Output to be CF Compliant for original format """ print( "TEST 10: TEST CONVERT RAPID OUTPUT TO CF COMPLIANT - ORIGINAL (COMID_LAT_LON_Z)" ) input_qout_file = os.path.join(COMPARE_DATA_PATH, 'Qout_nasa_lis_3hr_20020830_original.nc') temp_qout_file = os.path.join( OUTPUT_DATA_PATH, 'Qout_nasa_lis_3hr_20020830_original_test_cf.nc') copy(input_qout_file, temp_qout_file) rapid_manager = RAPID(rapid_executable_location=RAPID_EXE_PATH, cygwin_bin_location=CYGWIN_BIN_PATH, Qout_file=temp_qout_file, rapid_connect_file=os.path.join( INPUT_DATA_PATH, 'rapid_connect.csv'), ZS_TauR=3 * 3600) rapid_manager.make_output_CF_compliant( simulation_start_datetime=datetime(2002, 8, 30), comid_lat_lon_z_file=os.path.join(INPUT_DATA_PATH, 'comid_lat_lon_z.csv'), project_name= "ERA Interim (T511 Grid) 3 Hourly Runoff Based Historical flows by US Army ERDC" ) cf_qout_file_solution = os.path.join(COMPARE_DATA_PATH, 'Qout_nasa_lis_3hr_20020830_CF.nc') #check Qout assert (compare_qout_files(temp_qout_file, cf_qout_file_solution)) #check other info in netcdf file d1 = Dataset(temp_qout_file) d2 = Dataset(cf_qout_file_solution) assert (d1.dimensions.keys() == d2.dimensions.keys()) assert (d1.variables.keys() == d2.variables.keys()) assert ((d1.variables['time'][:] == d2.variables['time'][:]).all()) assert ((d1.variables['rivid'][:] == d2.variables['rivid'][:]).all()) assert ((d1.variables['lat'][:] == d2.variables['lat'][:]).all()) assert ((d1.variables['lon'][:] == d2.variables['lon'][:]).all()) d1.close() d2.close() remove_files(temp_qout_file)
def test_update_rapid_numbers_input_file(): """ Checks RAPID input file update with number validation """ print("TEST 4: GENERATE NUMBERS FOR NAMELIST FILE") rapid_manager = RAPID(rapid_executable_location=RAPID_EXE_PATH, cygwin_bin_location=CYGWIN_BIN_PATH, use_all_processors=True, rapid_connect_file=os.path.join(INPUT_DATA_PATH, 'rapid_connect.csv'), riv_bas_id_file=os.path.join(INPUT_DATA_PATH, 'riv_bas_id.csv'), ) rapid_manager.update_reach_number_data() rapid_manager.update_parameters(rapid_connect_file='rapid_connect.csv', Vlat_file='m3_nasa_lis_3hr_20020830.nc', riv_bas_id_file='riv_bas_id.csv', k_file='k.csv', x_file='x.csv', Qout_file='Qout.nc' ) generated_input_file = os.path.join(OUTPUT_DATA_PATH, "rapid_namelist-GENERATE-NUMBERS") rapid_manager.generate_namelist_file(generated_input_file) generated_input_file_solution = os.path.join(COMPARE_DATA_PATH, "rapid_namelist-GENERATE-NUMBERS") ok_(fcmp(generated_input_file, generated_input_file_solution)) remove_files(generated_input_file)
def test_run_rapid_simulation(): """ Test Running RAPID Simulation """ print("TEST 7: TEST RUNNING RAPID SIMULATION") generated_qout_file = os.path.join(OUTPUT_DATA_PATH, 'Qout_nasa_lis_3hr_20020830_generated.nc') rapid_manager = RAPID(rapid_executable_location=RAPID_EXE_PATH, cygwin_bin_location=CYGWIN_BIN_PATH, num_processors=1, rapid_connect_file=os.path.join(INPUT_DATA_PATH, 'rapid_connect.csv'), riv_bas_id_file=os.path.join(INPUT_DATA_PATH, 'riv_bas_id.csv'), Vlat_file=os.path.join(INPUT_DATA_PATH, 'm3_nasa_lis_3hr_20020830.nc'), k_file=os.path.join(INPUT_DATA_PATH, 'k.csv'), x_file=os.path.join(INPUT_DATA_PATH, 'x.csv'), ZS_dtM=10800, ZS_dtR=900, ZS_TauM=2*86400, ZS_TauR=10800, Qout_file=generated_qout_file ) rapid_manager.update_reach_number_data() rapid_manager.run() generated_qout_file_solution = os.path.join(COMPARE_DATA_PATH, 'Qout_nasa_lis_3hr_20020830.nc') #check Qout ok_(compare_qout_files(generated_qout_file, generated_qout_file_solution)) #check other info in netcdf file d1 = Dataset(generated_qout_file) d2 = Dataset(generated_qout_file_solution) ok_(d1.dimensions.keys() == d2.dimensions.keys()) ok_(d1.variables.keys() == d2.variables.keys()) ok_((d1.variables['rivid'][:] == d2.variables['rivid'][:]).all()) d1.close() d2.close() remove_files(generated_qout_file)
def test_generate_rapid_input_file(): """ Checks RAPID input file generation with valid input """ print("TEST 1: GENERATE NAMELIST FILE") rapid_manager = RAPID( rapid_executable_location=RAPID_EXE_PATH, cygwin_bin_location=CYGWIN_BIN_PATH, use_all_processors=True, ZS_TauR=24 * 3600, #duration of routing procedure (time step of runoff data) ZS_dtR=15 * 60, #internal routing time step ZS_TauM=12 * 24 * 3600, #total simulation time ZS_dtM=24 * 3600 #input time step ) rapid_manager.update_parameters(rapid_connect_file='rapid_connect.csv', Vlat_file='m3_riv.nc', riv_bas_id_file='riv_bas_id.csv', k_file='k.csv', x_file='x.csv', Qout_file='Qout.nc') generated_input_file = os.path.join(OUTPUT_DATA_PATH, "rapid_namelist-GENERATE") rapid_manager.generate_namelist_file(generated_input_file) generated_input_file_solution = os.path.join(COMPARE_DATA_PATH, "rapid_namelist-GENERATE") assert (fcmp(generated_input_file, generated_input_file_solution)) remove_files(generated_input_file)
def test_update_rapid_input_file(): """ Checks RAPID input file update with valid input """ print("TEST 2: UPDATE NAMELIST FILE") rapid_manager = RAPID( rapid_executable_location=RAPID_EXE_PATH, cygwin_bin_location=CYGWIN_BIN_PATH, use_all_processors=True, ) rapid_manager.update_parameters(rapid_connect_file='rapid_connect.csv', Vlat_file='m3_riv.nc', riv_bas_id_file='riv_bas_id.csv', k_file='k.csv', x_file='x.csv', Qout_file='Qout.nc') original_input_file = os.path.join(INPUT_DATA_PATH, "rapid_namelist_valid") updated_input_file = os.path.join(OUTPUT_DATA_PATH, "rapid_namelist-UPDATE") copy(original_input_file, updated_input_file) rapid_manager.update_namelist_file(updated_input_file) updated_input_file_solution = os.path.join(COMPARE_DATA_PATH, "rapid_namelist-UPDATE") assert (fcmp(updated_input_file, updated_input_file_solution)) remove_files(updated_input_file)
def test_convert_file_to_be_cf_compliant_original_format(): """ Test Convert RAPID Output to be CF Compliant for original format """ print("TEST 10: TEST CONVERT RAPID OUTPUT TO CF COMPLIANT - ORIGINAL (COMID_LAT_LON_Z)") input_qout_file = os.path.join(COMPARE_DATA_PATH, 'Qout_nasa_lis_3hr_20020830_original.nc') temp_qout_file = os.path.join(OUTPUT_DATA_PATH, 'Qout_nasa_lis_3hr_20020830_original_test_cf.nc') copy(input_qout_file, temp_qout_file) rapid_manager = RAPID(rapid_executable_location=RAPID_EXE_PATH, cygwin_bin_location=CYGWIN_BIN_PATH, Qout_file=temp_qout_file, rapid_connect_file=os.path.join(INPUT_DATA_PATH, 'rapid_connect.csv'), ZS_TauR=3*3600) rapid_manager.make_output_CF_compliant(simulation_start_datetime=datetime(2002, 8, 30), comid_lat_lon_z_file=os.path.join(INPUT_DATA_PATH, 'comid_lat_lon_z.csv'), project_name="ERA Interim (T511 Grid) 3 Hourly Runoff Based Historical flows by US Army ERDC") cf_qout_file_solution = os.path.join(COMPARE_DATA_PATH, 'Qout_nasa_lis_3hr_20020830_CF.nc') #check Qout ok_(compare_qout_files(temp_qout_file, cf_qout_file_solution)) #check other info in netcdf file d1 = Dataset(temp_qout_file) d2 = Dataset(cf_qout_file_solution) ok_(d1.dimensions.keys() == d2.dimensions.keys()) ok_(d1.variables.keys() == d2.variables.keys()) ok_((d1.variables['time'][:] == d1.variables['time'][:]).all()) ok_((d1.variables['rivid'][:] == d1.variables['rivid'][:]).all()) ok_((d1.variables['lat'][:] == d1.variables['lat'][:]).all()) ok_((d1.variables['lon'][:] == d1.variables['lon'][:]).all()) d1.close() d2.close() remove_files(temp_qout_file)
def test_generate_qinit_file(): """ This tests the qinit file function to create an input qinit file for RAPID """ print("TEST 11: TEST GENERATE QINIT FILE") rapid_manager = RAPID(rapid_executable_location=RAPID_EXE_PATH, cygwin_bin_location=CYGWIN_BIN_PATH, rapid_connect_file=os.path.join(INPUT_DATA_PATH, 'rapid_connect.csv') ) #test with original rapid outpur input_qout_file = os.path.join(COMPARE_DATA_PATH, 'Qout_nasa_lis_3hr_20020830.nc') original_qout_file = os.path.join(OUTPUT_DATA_PATH, 'Qout_nasa_lis_3hr_20020830.nc') copy(input_qout_file, original_qout_file) qinit_original_rapid_qout = os.path.join(OUTPUT_DATA_PATH, 'qinit_original_rapid_qout.csv') rapid_manager.update_parameters(Qout_file=original_qout_file) rapid_manager.generate_qinit_from_past_qout(qinit_file=qinit_original_rapid_qout) qinit_original_rapid_qout_solution = os.path.join(COMPARE_DATA_PATH, 'qinit_original_rapid_qout.csv') ok_(compare_csv_decimal_files(qinit_original_rapid_qout, qinit_original_rapid_qout_solution, header=False)) #test with CF rapid output and alternate time index cf_input_qout_file = os.path.join(COMPARE_DATA_PATH, 'Qout_nasa_lis_3hr_20020830_CF.nc') cf_qout_file = os.path.join(OUTPUT_DATA_PATH, 'Qout_nasa_lis_3hr_20020830_CF.nc') copy(cf_input_qout_file, cf_qout_file) qinit_cf_rapid_qout = os.path.join(OUTPUT_DATA_PATH, 'qinit_cf_rapid_qout.csv') rapid_manager.update_parameters(Qout_file=cf_qout_file) rapid_manager.generate_qinit_from_past_qout(qinit_file=qinit_cf_rapid_qout, time_index=5) qinit_cf_rapid_qout_solution = os.path.join(COMPARE_DATA_PATH, 'qinit_cf_rapid_qout.csv') ok_(compare_csv_decimal_files(qinit_cf_rapid_qout, qinit_cf_rapid_qout_solution, header=False)) remove_files(original_qout_file, qinit_original_rapid_qout, cf_qout_file, qinit_cf_rapid_qout )
def test_update_rapid_numbers_forcing_input_file(): """ Checks RAPID input file update with forcing data and number validation """ rapid_manager = RAPID(rapid_executable_location=RAPID_EXE_PATH, cygwin_bin_location=CYGWIN_BIN_PATH, use_all_processors=True, rapid_connect_file=os.path.join(INPUT_DATA_PATH, 'rapid_connect.csv'), riv_bas_id_file=os.path.join(INPUT_DATA_PATH, 'riv_bas_id.csv'), for_tot_id_file=os.path.join(INPUT_DATA_PATH, 'for_tot_id.csv'), for_use_id_file=os.path.join(INPUT_DATA_PATH, 'for_use_id.csv'), ZS_dtF=3 * 60 * 60, BS_opt_for=True ) rapid_manager.update_reach_number_data() rapid_manager.update_parameters(rapid_connect_file='rapid_connect.csv', Vlat_file='m3_nasa_lis_3hr_20020830.nc', riv_bas_id_file='riv_bas_id.csv', k_file='k.csv', x_file='x.csv', Qout_file='Qout.nc', Qfor_file='qfor.csv', for_tot_id_file='for_tot_id.csv', for_use_id_file='for_use_id.csv', ) generated_input_file = os.path.join(OUTPUT_DATA_PATH, "rapid_namelist-GENERATE-NUMBERS-FORCING") rapid_manager.generate_namelist_file(generated_input_file) generated_input_file_solution = os.path.join(COMPARE_DATA_PATH, "rapid_namelist-GENERATE-NUMBERS-FORCING") assert (fcmp(generated_input_file, generated_input_file_solution)) remove_files(generated_input_file)
def test_run_rapid_simulation(): """ Test Running RAPID Simulation """ print("TEST 7: TEST RUNNING RAPID SIMULATION") generated_qout_file = os.path.join( OUTPUT_DATA_PATH, 'Qout_nasa_lis_3hr_20020830_generated.nc') rapid_manager = RAPID( rapid_executable_location=RAPID_EXE_PATH, cygwin_bin_location=CYGWIN_BIN_PATH, num_processors=1, rapid_connect_file=os.path.join(INPUT_DATA_PATH, 'rapid_connect.csv'), riv_bas_id_file=os.path.join(INPUT_DATA_PATH, 'riv_bas_id.csv'), Vlat_file=os.path.join(INPUT_DATA_PATH, 'm3_nasa_lis_3hr_20020830.nc'), k_file=os.path.join(INPUT_DATA_PATH, 'k.csv'), x_file=os.path.join(INPUT_DATA_PATH, 'x.csv'), ZS_dtM=10800, ZS_dtR=900, ZS_TauM=2 * 86400, ZS_TauR=10800, Qout_file=generated_qout_file) rapid_manager.update_reach_number_data() rapid_manager.run() generated_qout_file_solution = os.path.join( COMPARE_DATA_PATH, 'Qout_nasa_lis_3hr_20020830.nc') #check Qout assert (compare_qout_files(generated_qout_file, generated_qout_file_solution)) #check other info in netcdf file d1 = Dataset(generated_qout_file) d2 = Dataset(generated_qout_file_solution) # MPG: new dimensions have been introduced in RAPID. We only test for those # included in the original benchmarks. for dim in ['time', 'rivid']: assert (dim in d1.dimensions.keys()) # MPG: new variables have been introduced in RAPID. We only test for those # included in the original benchmarks. for v in [u'Qout', u'rivid', u'time', u'lon', u'lat', u'crs']: assert (v in d1.variables.keys()) assert ((d1.variables['rivid'][:] == d2.variables['rivid'][:]).all()) d1.close() d2.close() remove_files(generated_qout_file)
def test_run_rapid_simulation(): """ Test Running RAPID Simulation """ print("TEST 7: TEST RUNNING RAPID SIMULATION") generated_qout_file = os.path.join( OUTPUT_DATA_PATH, 'Qout_nasa_lis_3hr_20020830_generated.nc') rapid_manager = RAPID( rapid_executable_location=RAPID_EXE_PATH, cygwin_bin_location=CYGWIN_BIN_PATH, num_processors=1, rapid_connect_file=os.path.join(INPUT_DATA_PATH, 'rapid_connect.csv'), riv_bas_id_file=os.path.join(INPUT_DATA_PATH, 'riv_bas_id.csv'), Vlat_file=os.path.join(INPUT_DATA_PATH, 'm3_nasa_lis_3hr_20020830.nc'), k_file=os.path.join(INPUT_DATA_PATH, 'k.csv'), x_file=os.path.join(INPUT_DATA_PATH, 'x.csv'), ZS_dtM=10800, ZS_dtR=900, ZS_TauM=2 * 86400, ZS_TauR=10800, Qout_file=generated_qout_file) rapid_manager.update_reach_number_data() rapid_manager.run() generated_qout_file_solution = os.path.join( COMPARE_DATA_PATH, 'Qout_nasa_lis_3hr_20020830.nc') #check Qout ok_(compare_qout_files(generated_qout_file, generated_qout_file_solution)) #check other info in netcdf file d1 = Dataset(generated_qout_file) d2 = Dataset(generated_qout_file_solution) ok_(d1.dimensions.keys() == d2.dimensions.keys()) ok_(d1.variables.keys() == d2.variables.keys()) ok_((d1.variables['rivid'][:] == d2.variables['rivid'][:]).all()) d1.close() d2.close() remove_files(generated_qout_file)
def ecmwf_rapid_multiprocess_worker(node_path, rapid_input_directory, ecmwf_forecast, forecast_date_timestep, watershed, subbasin, rapid_executable_location, init_flow, initialization_time_step, conversion_flag, # modified this line CJB 20190218 # MJS I might consider a netCDF4.Dataset.variables['RO'].units check in SPT, # and a correction of units attributes in the upstream cdo processing. # # dam arguments added, MJS 8/23/2020 BS_opt_dam,IS_dam_tot,IS_dam_use, dam_tot_id_file,dam_use_id_file,dam_file): """ Multiprocess worker function """ print("In ecmwf_rapid_multiprocess_worker") time_start_all = datetime.datetime.utcnow() os.chdir(node_path) ensemble_number = get_ensemble_number_from_forecast(ecmwf_forecast) def remove_file(file_name): """ remove file """ try: os.remove(file_name) except OSError: pass #prepare ECMWF file for RAPID print("INFO: Running all ECMWF downscaling for watershed: {0}-{1} {2} {3}" .format(watershed, subbasin, forecast_date_timestep, ensemble_number)) #set up RAPID manager rapid_connect_file=case_insensitive_file_search(rapid_input_directory, r'rapid_connect\.csv') rapid_manager = RAPID( rapid_executable_location=rapid_executable_location, rapid_connect_file=rapid_connect_file, riv_bas_id_file=case_insensitive_file_search(rapid_input_directory, r'riv_bas_id.*?\.csv'), k_file=case_insensitive_file_search(rapid_input_directory, r'k\.csv'), x_file=case_insensitive_file_search(rapid_input_directory, r'x\.csv'), ZS_dtM=3*60*60, #RAPID internal loop time interval ) # check for forcing flows try: rapid_manager.update_parameters( Qfor_file=case_insensitive_file_search(rapid_input_directory, r'qfor\.csv'), for_tot_id_file=case_insensitive_file_search(rapid_input_directory, r'for_tot_id\.csv'), for_use_id_file=case_insensitive_file_search(rapid_input_directory, r'for_use_id\.csv'), ZS_dtF=3*60*60, # forcing time interval BS_opt_for=True ) except Exception: print('WARNING: Forcing files not found. Skipping forcing ...') pass rapid_manager.update_reach_number_data() outflow_file_name = os.path.join(node_path, 'Qout_%s_%s_%s.nc' % (watershed.lower(), subbasin.lower(), ensemble_number)) qinit_file = "" BS_opt_Qinit = False print(init_flow) if(init_flow): #check for qinit file past_date = (datetime.datetime.strptime(forecast_date_timestep[:11],"%Y%m%d.%H") - \ # datetime.timedelta(hours=initialization_time_step)).strftime("%Y%m%dt%H") datetime.timedelta(hours=12)).strftime("%Y%m%dt%H") print("Past date:" ,past_date) qinit_file = os.path.join(rapid_input_directory, 'Qinit_%s.csv' % past_date) BS_opt_Qinit = qinit_file and os.path.exists(qinit_file) if not BS_opt_Qinit: print("Error: {0} not found. Not initializing ...".format(qinit_file)) qinit_file = "" try: comid_lat_lon_z_file = case_insensitive_file_search(rapid_input_directory, r'comid_lat_lon_z.*?\.csv') except Exception: comid_lat_lon_z_file = "" print("WARNING: comid_lat_lon_z_file not found. Not adding lat/lon/z to output file ...") RAPIDinflowECMWF_tool = CreateInflowFileFromECMWFRunoff() forecast_resolution = RAPIDinflowECMWF_tool.dataIdentify(ecmwf_forecast) time_step_count = RAPIDinflowECMWF_tool.getTimeSize(ecmwf_forecast) #new line 20190108 CJB print(forecast_resolution) """ NOTE: time_step_count is the total count of forecast steps, not periods """ # 20190108 CJB #determine weight table from resolution if forecast_resolution == "HRES136": #new line 20190108 CJB 150 <= T <= 240 #if forecast_resolution == "HighRes": #HIGH RES grid_name = RAPIDinflowECMWF_tool.getGridName(ecmwf_forecast, high_res=True) #generate inflows for each timestep weight_table_file = case_insensitive_file_search(rapid_input_directory, r'weight_{0}\.csv'.format(grid_name)) inflow_file_name_1hr = os.path.join(node_path, 'm3_riv_bas_1hr_%s.nc' % ensemble_number) inflow_file_name_3hr = os.path.join(node_path, 'm3_riv_bas_3hr_%s.nc' % ensemble_number) inflow_file_name_6hr = os.path.join(node_path, 'm3_riv_bas_6hr_%s.nc' % ensemble_number) qinit_3hr_file = os.path.join(node_path, 'Qinit_3hr.csv') qinit_6hr_file = os.path.join(node_path, 'Qinit_6hr.csv') try: RAPIDinflowECMWF_tool.execute(ecmwf_forecast, weight_table_file, inflow_file_name_1hr, grid_name, conversion_flag, # added this line CJB 20190218 "1hr") #from Hour 0 to 90 (the first 91 time points) are of 1 hr time interval periods_1hr = 90 #new line 20190108 CJB interval_1hr = 1*60*60 #1hr duration_1hr = periods_1hr*interval_1hr #90hrs # modified line 20190108 CJB, MJS rapid_manager.update_parameters(ZS_TauR=interval_1hr, #duration of routing procedure (time step of runoff data) ZS_dtR=15*60, #internal routing time step ZS_TauM=duration_1hr, #total simulation time ZS_dtM=interval_1hr, #RAPID internal loop time interval ZS_dtF=interval_1hr, # forcing time interval Vlat_file=inflow_file_name_1hr, Qout_file=outflow_file_name, Qinit_file=qinit_file, BS_opt_Qinit=BS_opt_Qinit, BS_opt_dam = BS_opt_dam, IS_dam_tot = IS_dam_tot, IS_dam_use = IS_dam_use, dam_tot_id_file = dam_tot_id_file, dam_use_id_file = dam_use_id_file, dam_file = dam_file) rapid_manager.run() #generate Qinit from 1hr rapid_manager.generate_qinit_from_past_qout(qinit_3hr_file) #then from Hour 90 to 144 (19 time points) are of 3 hour time interval RAPIDinflowECMWF_tool.execute(ecmwf_forecast, weight_table_file, inflow_file_name_3hr, grid_name, conversion_flag, # added this line CJB 20190218 "3hr_subset") periods_3hr = 18 #new line 20190108 CJB interval_3hr = 3*60*60 #3hr duration_3hr = periods_3hr*interval_3hr #54hrs # modified line 20190108 CJB, MJS qout_3hr = os.path.join(node_path,'Qout_3hr.nc') rapid_manager.update_parameters(ZS_TauR=interval_3hr, #duration of routing procedure (time step of runoff data) ZS_dtR=15*60, #internal routing time step ZS_TauM=duration_3hr, #total simulation time ZS_dtM=interval_3hr, #RAPID internal loop time interval ZS_dtF=interval_3hr, # forcing time interval Vlat_file=inflow_file_name_3hr, Qout_file=qout_3hr, BS_opt_dam = BS_opt_dam, IS_dam_tot = IS_dam_tot, IS_dam_use = IS_dam_use, dam_tot_id_file = dam_tot_id_file, dam_use_id_file = dam_use_id_file, dam_file = dam_file) rapid_manager.run() #generate Qinit from 3hr rapid_manager.generate_qinit_from_past_qout(qinit_6hr_file) #from Hour 144 to 240 (15 time points) are of 6 hour time interval RAPIDinflowECMWF_tool.execute(ecmwf_forecast, weight_table_file, inflow_file_name_6hr, grid_name, conversion_flag, # added this line CJB 20190218 "6hr_subset") periods_6hr = (time_step_count -1) - periods_3hr - periods_1hr #new line 20190108 CJB, MJS interval_6hr = 6*60*60 #6hr duration_6hr = periods_6hr*interval_6hr #new line 20190108 CJB, MJS qout_6hr = os.path.join(node_path,'Qout_6hr.nc') rapid_manager.update_parameters(ZS_TauR=interval_6hr, #duration of routing procedure (time step of runoff data) ZS_dtR=15*60, #internal routing time step ZS_TauM=duration_6hr, #total simulation time ZS_dtM=interval_6hr, #RAPID internal loop time interval ZS_dtF=interval_6hr, # forcing time interval Vlat_file=inflow_file_name_6hr, Qout_file=qout_6hr, BS_opt_dam = BS_opt_dam, IS_dam_tot = IS_dam_tot, IS_dam_use = IS_dam_use, dam_tot_id_file = dam_tot_id_file, dam_use_id_file = dam_use_id_file, dam_file = dam_file) rapid_manager.run() #Merge all files together at the end cv = ConvertRAPIDOutputToCF(rapid_output_file=[outflow_file_name, qout_3hr, qout_6hr], start_datetime=datetime.datetime.strptime(forecast_date_timestep[:11], "%Y%m%d.%H"), time_step=[interval_1hr, interval_3hr, interval_6hr], qinit_file=qinit_file, comid_lat_lon_z_file=comid_lat_lon_z_file, rapid_connect_file=rapid_connect_file, project_name="ECMWF-RAPID Predicted flows by US Army ERDC", output_id_dim_name='rivid', output_flow_var_name='Qout', print_debug=False) cv.convert() except Exception: remove_file(qinit_3hr_file) remove_file(qinit_6hr_file) remove_file(inflow_file_name_1hr) remove_file(inflow_file_name_3hr) remove_file(inflow_file_name_6hr) traceback.print_exc() raise remove_file(qinit_3hr_file) remove_file(qinit_6hr_file) remove_file(inflow_file_name_1hr) remove_file(inflow_file_name_3hr) remove_file(inflow_file_name_6hr) if forecast_resolution == "HRES13": #new line 20190108 CJB 93 <= T <= 144 #if forecast_resolution == "HighRes": #HIGH RES grid_name = RAPIDinflowECMWF_tool.getGridName(ecmwf_forecast, high_res=True) #generate inflows for each timestep weight_table_file = case_insensitive_file_search(rapid_input_directory, r'weight_{0}\.csv'.format(grid_name)) inflow_file_name_1hr = os.path.join(node_path, 'm3_riv_bas_1hr_%s.nc' % ensemble_number) inflow_file_name_3hr = os.path.join(node_path, 'm3_riv_bas_3hr_%s.nc' % ensemble_number) #inflow_file_name_6hr = os.path.join(node_path, 'm3_riv_bas_6hr_%s.nc' % ensemble_number) qinit_3hr_file = os.path.join(node_path, 'Qinit_3hr.csv') #qinit_6hr_file = os.path.join(node_path, 'Qinit_6hr.csv') try: RAPIDinflowECMWF_tool.execute(ecmwf_forecast, weight_table_file, inflow_file_name_1hr, grid_name, conversion_flag, # added this line CJB 20190218 "1hr") #from Hour 0 to 90 (the first 91 time points) are of 1 hr time interval periods_1hr = 90 #new line 20190108 CJB interval_1hr = 1*60*60 #1hr duration_1hr = periods_1hr*60*60 #90hrs # modified line 20190108 CJB rapid_manager.update_parameters(ZS_TauR=interval_1hr, #duration of routing procedure (time step of runoff data) ZS_dtR=15*60, #internal routing time step ZS_TauM=duration_1hr, #total simulation time ZS_dtM=interval_1hr, #RAPID internal loop time interval ZS_dtF=interval_1hr, # forcing time interval Vlat_file=inflow_file_name_1hr, Qout_file=outflow_file_name, Qinit_file=qinit_file, BS_opt_Qinit=BS_opt_Qinit, BS_opt_dam = BS_opt_dam, IS_dam_tot = IS_dam_tot, IS_dam_use = IS_dam_use, dam_tot_id_file = dam_tot_id_file, dam_use_id_file = dam_use_id_file, dam_file = dam_file) rapid_manager.run() #generate Qinit from 1hr rapid_manager.generate_qinit_from_past_qout(qinit_3hr_file) #then from Hour 90 to 144 (19 time points) are of 3 hour time interval RAPIDinflowECMWF_tool.execute(ecmwf_forecast, weight_table_file, inflow_file_name_3hr, grid_name, conversion_flag, # added this line CJB 20190218 "3hr_subset") periods_3hr = (time_step_count - 1) - periods_1hr #new line 20190108 CJB, MJS interval_3hr = 3*60*60 #3hr duration_3hr = periods_3hr*interval_3hr #new line 20190108 CJB, MJS qout_3hr = os.path.join(node_path,'Qout_3hr.nc') rapid_manager.update_parameters(ZS_TauR=interval_3hr, #duration of routing procedure (time step of runoff data) ZS_dtR=15*60, #internal routing time step ZS_TauM=duration_3hr, #total simulation time ZS_dtM=interval_3hr, #RAPID internal loop time interval ZS_dtF=interval_3hr, # forcing time interval Vlat_file=inflow_file_name_3hr, Qout_file=qout_3hr, BS_opt_dam = BS_opt_dam, IS_dam_tot = IS_dam_tot, IS_dam_use = IS_dam_use, dam_tot_id_file = dam_tot_id_file, dam_use_id_file = dam_use_id_file, dam_file = dam_file) rapid_manager.run() #Merge all files together at the end cv = ConvertRAPIDOutputToCF(rapid_output_file=[outflow_file_name, qout_3hr], start_datetime=datetime.datetime.strptime(forecast_date_timestep[:11], "%Y%m%d.%H"), time_step=[interval_1hr, interval_3hr], qinit_file=qinit_file, comid_lat_lon_z_file=comid_lat_lon_z_file, rapid_connect_file=rapid_connect_file, project_name="ECMWF-RAPID Predicted flows by US Army ERDC", output_id_dim_name='rivid', output_flow_var_name='Qout', print_debug=False) cv.convert() except Exception: remove_file(qinit_3hr_file) remove_file(inflow_file_name_1hr) remove_file(inflow_file_name_3hr) traceback.print_exc() raise remove_file(qinit_3hr_file) remove_file(inflow_file_name_1hr) remove_file(inflow_file_name_3hr) if forecast_resolution == "HRES1": #new line 20190108 CJB 0 <= T <= 90 #if forecast_resolution == "HighRes": #HIGH RES grid_name = RAPIDinflowECMWF_tool.getGridName(ecmwf_forecast, high_res=True) #generate inflows for each timestep weight_table_file = case_insensitive_file_search(rapid_input_directory, r'weight_{0}\.csv'.format(grid_name)) inflow_file_name_1hr = os.path.join(node_path, 'm3_riv_bas_1hr_%s.nc' % ensemble_number) #inflow_file_name_3hr = os.path.join(node_path, 'm3_riv_bas_3hr_%s.nc' % ensemble_number) #inflow_file_name_6hr = os.path.join(node_path, 'm3_riv_bas_6hr_%s.nc' % ensemble_number) #qinit_3hr_file = os.path.join(node_path, 'Qinit_3hr.csv') #qinit_6hr_file = os.path.join(node_path, 'Qinit_6hr.csv') try: RAPIDinflowECMWF_tool.execute(ecmwf_forecast, weight_table_file, inflow_file_name_1hr, grid_name, conversion_flag, # added this line CJB 20190218 "1hr") #from Hour 0 to 90 (the first 91 time points) are of 1 hr time interval interval_1hr = 1*60*60 #1hr duration_1hr = (time_step_count - 1)*interval_1hr #new line 20190108 CJB, MJS rapid_manager.update_parameters(ZS_TauR=interval_1hr, #duration of routing procedure (time step of runoff data) ZS_dtR=15*60, #internal routing time step ZS_TauM=duration_1hr, #total simulation time ZS_dtM=interval_1hr, #RAPID internal loop time interval ZS_dtF=interval_1hr, # forcing time interval Vlat_file=inflow_file_name_1hr, Qout_file=outflow_file_name, Qinit_file=qinit_file, BS_opt_Qinit=BS_opt_Qinit, BS_opt_dam = BS_opt_dam, IS_dam_tot = IS_dam_tot, IS_dam_use = IS_dam_use, dam_tot_id_file = dam_tot_id_file, dam_use_id_file = dam_use_id_file, dam_file = dam_file) rapid_manager.run() #Merge all files together at the end cv = ConvertRAPIDOutputToCF(rapid_output_file=[outflow_file_name], start_datetime=datetime.datetime.strptime(forecast_date_timestep[:11], "%Y%m%d.%H"), time_step=[interval_1hr], qinit_file=qinit_file, comid_lat_lon_z_file=comid_lat_lon_z_file, rapid_connect_file=rapid_connect_file, project_name="ECMWF-RAPID Predicted flows by US Army ERDC", output_id_dim_name='rivid', output_flow_var_name='Qout', print_debug=False) cv.convert() except Exception: remove_file(inflow_file_name_1hr) traceback.print_exc() raise remove_file(inflow_file_name_1hr) elif forecast_resolution == "ENS36": #new line 20190108 CJB 150 <= T <= 360 #elif forecast_resolution == "LowResFull": #LOW RES - 3hr and 6hr timesteps grid_name = RAPIDinflowECMWF_tool.getGridName(ecmwf_forecast, high_res=False) #generate inflows for each timestep weight_table_file = case_insensitive_file_search(rapid_input_directory, r'weight_{0}\.csv'.format(grid_name)) inflow_file_name_3hr = os.path.join(node_path, 'm3_riv_bas_3hr_%s.nc' % ensemble_number) inflow_file_name_6hr = os.path.join(node_path, 'm3_riv_bas_6hr_%s.nc' % ensemble_number) qinit_6hr_file = os.path.join(node_path, 'Qinit_6hr.csv') try: RAPIDinflowECMWF_tool.execute(ecmwf_forecast, weight_table_file, inflow_file_name_3hr, grid_name, conversion_flag, # added this line CJB 20190218 "3hr_subset") #from Hour 0 to 144 (the first 49 time points) are of 3 hr time interval periods_3hr = 48 interval_3hr = 3*60*60 #3hr duration_3hr = periods_3hr*interval_3hr #new line 20190108 CJB, MJS rapid_manager.update_parameters(ZS_TauR=interval_3hr, #duration of routing procedure (time step of runoff data) ZS_dtR=15*60, #internal routing time step ZS_TauM=duration_3hr, #total simulation time ZS_dtM=interval_3hr, #RAPID internal loop time interval ZS_dtF=interval_3hr, # forcing time interval Vlat_file=inflow_file_name_3hr, Qout_file=outflow_file_name, Qinit_file=qinit_file, BS_opt_Qinit=BS_opt_Qinit, BS_opt_dam = BS_opt_dam, IS_dam_tot = IS_dam_tot, IS_dam_use = IS_dam_use, dam_tot_id_file = dam_tot_id_file, dam_use_id_file = dam_use_id_file, dam_file = dam_file) rapid_manager.run() #generate Qinit from 3hr rapid_manager.generate_qinit_from_past_qout(qinit_6hr_file) #from Hour 144 to 360 (36 time points) are of 6 hour time interval RAPIDinflowECMWF_tool.execute(ecmwf_forecast, weight_table_file, inflow_file_name_6hr, grid_name, conversion_flag, # added this line CJB 20190218 "6hr_subset") periods_6hr = (time_step_count - 1) - periods_3hr #new line 20190108 CJB, MJS interval_6hr = 6*60*60 #6hr duration_6hr = periods_6hr*interval_6hr #new line 20190108 CJB, MJS qout_6hr = os.path.join(node_path,'Qout_6hr.nc') rapid_manager.update_parameters(ZS_TauR=interval_6hr, #duration of routing procedure (time step of runoff data) ZS_dtR=15*60, #internal routing time step ZS_TauM=duration_6hr, #total simulation time ZS_dtM=interval_6hr, #RAPID internal loop time interval ZS_dtF=interval_6hr, # forcing time interval Vlat_file=inflow_file_name_6hr, Qout_file=qout_6hr, BS_opt_dam = BS_opt_dam, IS_dam_tot = IS_dam_tot, IS_dam_use = IS_dam_use, dam_tot_id_file = dam_tot_id_file, dam_use_id_file = dam_use_id_file, dam_file = dam_file) rapid_manager.run() #Merge all files together at the end cv = ConvertRAPIDOutputToCF(rapid_output_file=[outflow_file_name, qout_6hr], start_datetime=datetime.datetime.strptime(forecast_date_timestep[:11], "%Y%m%d.%H"), time_step=[interval_3hr, interval_6hr], qinit_file=qinit_file, comid_lat_lon_z_file=comid_lat_lon_z_file, rapid_connect_file=rapid_connect_file, project_name="ECMWF-RAPID Predicted flows by US Army ERDC", output_id_dim_name='rivid', output_flow_var_name='Qout', print_debug=False) cv.convert() except Exception: remove_file(qinit_6hr_file) remove_file(inflow_file_name_3hr) remove_file(inflow_file_name_6hr) traceback.print_exc() raise remove_file(qinit_6hr_file) remove_file(inflow_file_name_3hr) remove_file(inflow_file_name_6hr) elif forecast_resolution == "ENS3": #new line 20190108 CJB 0 <= T <= 144 #elif forecast_resolution == "LowResFull": #LOW RES - 3hr and 6hr timesteps grid_name = RAPIDinflowECMWF_tool.getGridName(ecmwf_forecast, high_res=False) #generate inflows for each timestep weight_table_file = case_insensitive_file_search(rapid_input_directory, r'weight_{0}\.csv'.format(grid_name)) inflow_file_name_3hr = os.path.join(node_path, 'm3_riv_bas_3hr_%s.nc' % ensemble_number) #inflow_file_name_6hr = os.path.join(node_path, 'm3_riv_bas_6hr_%s.nc' % ensemble_number) #qinit_6hr_file = os.path.join(node_path, 'Qinit_6hr.csv') try: RAPIDinflowECMWF_tool.execute(ecmwf_forecast, weight_table_file, inflow_file_name_3hr, grid_name, conversion_flag, # added this line CJB 20190218 "3hr_subset") #from Hour 0 to 144 (the first 49 time points) are of 3 hr time interval periods_3hr = time_step_count - 1 #new line 20190108 CJB, MJS interval_3hr = 3*60*60 #3hr duration_3hr = periods_3hr*interval_3hr #new line 20190108 CJB, MJS rapid_manager.update_parameters(ZS_TauR=interval_3hr, #duration of routing procedure (time step of runoff data) ZS_dtR=15*60, #internal routing time step ZS_TauM=duration_3hr, #total simulation time ZS_dtM=interval_3hr, #RAPID internal loop time interval ZS_dtF=interval_3hr, # forcing time interval Vlat_file=inflow_file_name_3hr, Qout_file=outflow_file_name, Qinit_file=qinit_file, BS_opt_Qinit=BS_opt_Qinit, BS_opt_dam = BS_opt_dam, IS_dam_tot = IS_dam_tot, IS_dam_use = IS_dam_use, dam_tot_id_file = dam_tot_id_file, dam_use_id_file = dam_use_id_file, dam_file = dam_file) rapid_manager.run() #Merge all files together at the end cv = ConvertRAPIDOutputToCF(rapid_output_file=[outflow_file_name], start_datetime=datetime.datetime.strptime(forecast_date_timestep[:11], "%Y%m%d.%H"), time_step=[interval_3hr], qinit_file=qinit_file, comid_lat_lon_z_file=comid_lat_lon_z_file, rapid_connect_file=rapid_connect_file, project_name="ECMWF-RAPID Predicted flows by US Army ERDC", output_id_dim_name='rivid', output_flow_var_name='Qout', print_debug=False) cv.convert() #rapid_manager.make_output_CF_compliant(simulation_start_datetime=datetime.datetime.strptime(forecast_date_timestep[:11], "%Y%m%d.%H"), # comid_lat_lon_z_file=comid_lat_lon_z_file, # project_name="ECMWF-RAPID Predicted flows by US Army ERDC") except Exception: remove_file(inflow_file_name_3hr) traceback.print_exc() raise #remove_file(inflow_file_name_3hr) elif forecast_resolution == "ENS6": #LOW RES - 6hr only inflow_file_name = os.path.join(node_path, 'm3_riv_bas_%s.nc' % ensemble_number) grid_name = RAPIDinflowECMWF_tool.getGridName(ecmwf_forecast, high_res=False) #generate inflows for each timestep weight_table_file = case_insensitive_file_search(rapid_input_directory, r'weight_{0}\.csv'.format(grid_name)) try: print("INFO: Converting ECMWF inflow ...") RAPIDinflowECMWF_tool.execute(ecmwf_forecast, weight_table_file, inflow_file_name, conversion_flag, # added this line CJB 20190218 grid_name) periods_6hr = time_step_count - 1 #new line 20190108 CJB, MJS interval = 6*60*60 #6hr duration = periods_6hr*interval #new line 20190108 CJB rapid_manager.update_parameters(ZS_TauR=interval, #duration of routing procedure (time step of runoff data) ZS_dtR=15*60, #internal routing time step ZS_TauM=duration, #total simulation time Vlat_file=inflow_file_name, Qout_file=outflow_file_name, Qinit_file=qinit_file, BS_opt_Qinit=BS_opt_Qinit, BS_opt_dam = BS_opt_dam, IS_dam_tot = IS_dam_tot, IS_dam_use = IS_dam_use, dam_tot_id_file = dam_tot_id_file, dam_use_id_file = dam_use_id_file, dam_file = dam_file) rapid_manager.run() rapid_manager.make_output_CF_compliant(simulation_start_datetime=datetime.datetime.strptime(forecast_date_timestep[:11], "%Y%m%d.%H"), comid_lat_lon_z_file=comid_lat_lon_z_file, project_name="ECMWF-RAPID Predicted flows by US Army ERDC") except Exception: remove_file(inflow_file_name) traceback.print_exc() raise #clean up remove_file(inflow_file_name) #else: # raise Exception("ERROR: invalid forecast resolution ...") time_stop_all = datetime.datetime.utcnow() print("INFO: Total time to compute: {0}".format(time_stop_all-time_start_all))
def ecmwf_rapid_multiprocess_worker( node_path, rapid_input_directory, ecmwf_forecast, forecast_date_timestep, watershed, subbasin, rapid_executable_location, init_flow, initialization_time_step, BS_opt_dam, IS_dam_tot, IS_dam_use, dam_tot_id_file, dam_use_id_file, dam_file): """ Multiprocess worker function """ time_start_all = datetime.datetime.utcnow() os.chdir(node_path) ensemble_number = get_ensemble_number_from_forecast(ecmwf_forecast) def remove_file(file_name): """ remove file """ try: os.remove(file_name) except OSError: pass #prepare ECMWF file for RAPID print("INFO: Running all ECMWF downscaling for watershed: {0}-{1} {2} {3}". format(watershed, subbasin, forecast_date_timestep, ensemble_number)) #set up RAPID manager rapid_connect_file = case_insensitive_file_search(rapid_input_directory, r'rapid_connect\.csv') rapid_manager = RAPID( rapid_executable_location=rapid_executable_location, rapid_connect_file=rapid_connect_file, riv_bas_id_file=case_insensitive_file_search(rapid_input_directory, r'riv_bas_id.*?\.csv'), k_file=case_insensitive_file_search(rapid_input_directory, r'k\.csv'), x_file=case_insensitive_file_search(rapid_input_directory, r'x\.csv'), ZS_dtM=3 * 60 * 60, #RAPID internal loop time interval ) # check for forcing flows try: rapid_manager.update_parameters( Qfor_file=case_insensitive_file_search(rapid_input_directory, r'qfor\.csv'), for_tot_id_file=case_insensitive_file_search( rapid_input_directory, r'for_tot_id\.csv'), for_use_id_file=case_insensitive_file_search( rapid_input_directory, r'for_use_id\.csv'), ZS_dtF=3 * 60 * 60, # forcing time interval BS_opt_for=True) except Exception: print('WARNING: Forcing files not found. Skipping forcing ...') pass rapid_manager.update_reach_number_data() outflow_file_name = os.path.join( node_path, 'Qout_%s_%s_%s.nc' % (watershed.lower(), subbasin.lower(), ensemble_number)) qinit_file = "" BS_opt_Qinit = False if (init_flow): #check for qinit file past_date = (datetime.datetime.strptime(forecast_date_timestep[:11],"%Y%m%d.%H") - \ datetime.timedelta(hours=initialization_time_step)).strftime("%Y%m%dt%H") qinit_file = os.path.join(rapid_input_directory, 'Qinit_%s.csv' % past_date) BS_opt_Qinit = qinit_file and os.path.exists(qinit_file) if not BS_opt_Qinit: print("Error: {0} not found. Not initializing ...".format( qinit_file)) qinit_file = "" try: comid_lat_lon_z_file = case_insensitive_file_search( rapid_input_directory, r'comid_lat_lon_z.*?\.csv') except Exception: comid_lat_lon_z_file = "" print( "WARNING: comid_lat_lon_z_file not found. Not adding lat/lon/z to output file ..." ) RAPIDinflowECMWF_tool = CreateInflowFileFromECMWFRunoff() forecast_resolution = RAPIDinflowECMWF_tool.dataIdentify(ecmwf_forecast) #determine weight table from resolution if forecast_resolution == "HighRes": #HIGH RES grid_name = RAPIDinflowECMWF_tool.getGridName(ecmwf_forecast, high_res=True) #generate inflows for each timestep weight_table_file = case_insensitive_file_search( rapid_input_directory, r'weight_{0}\.csv'.format(grid_name)) inflow_file_name_1hr = os.path.join( node_path, 'm3_riv_bas_1hr_%s.nc' % ensemble_number) inflow_file_name_3hr = os.path.join( node_path, 'm3_riv_bas_3hr_%s.nc' % ensemble_number) inflow_file_name_6hr = os.path.join( node_path, 'm3_riv_bas_6hr_%s.nc' % ensemble_number) qinit_3hr_file = os.path.join(node_path, 'Qinit_3hr.csv') qinit_6hr_file = os.path.join(node_path, 'Qinit_6hr.csv') try: RAPIDinflowECMWF_tool.execute(ecmwf_forecast, weight_table_file, inflow_file_name_1hr, grid_name, "1hr") #from Hour 0 to 90 (the first 91 time points) are of 1 hr time interval interval_1hr = 1 * 60 * 60 #1hr duration_1hr = 90 * 60 * 60 #90hrs rapid_manager.update_parameters( ZS_TauR= interval_1hr, #duration of routing procedure (time step of runoff data) ZS_dtR=15 * 60, #internal routing time step ZS_TauM=duration_1hr, #total simulation time ZS_dtM=interval_1hr, #RAPID internal loop time interval ZS_dtF=interval_1hr, # forcing time interval Vlat_file=inflow_file_name_1hr, Qout_file=outflow_file_name, Qinit_file=qinit_file, BS_opt_Qinit=BS_opt_Qinit, BS_opt_dam=BS_opt_dam, IS_dam_tot=IS_dam_tot, IS_dam_use=IS_dam_use, dam_tot_id_file=dam_tot_id_file, dam_use_id_file=dam_use_id_file, dam_file=dam_file) rapid_manager.run() #generate Qinit from 1hr rapid_manager.generate_qinit_from_past_qout(qinit_3hr_file) #then from Hour 90 to 144 (19 time points) are of 3 hour time interval RAPIDinflowECMWF_tool.execute(ecmwf_forecast, weight_table_file, inflow_file_name_3hr, grid_name, "3hr_subset") interval_3hr = 3 * 60 * 60 #3hr duration_3hr = 54 * 60 * 60 #54hrs qout_3hr = os.path.join(node_path, 'Qout_3hr.nc') rapid_manager.update_parameters( ZS_TauR= interval_3hr, #duration of routing procedure (time step of runoff data) ZS_dtR=15 * 60, #internal routing time step ZS_TauM=duration_3hr, #total simulation time ZS_dtM=interval_3hr, #RAPID internal loop time interval ZS_dtF=interval_3hr, # forcing time interval Vlat_file=inflow_file_name_3hr, Qout_file=qout_3hr, BS_opt_dam=BS_opt_dam, #True, IS_dam_tot=IS_dam_tot, #1, IS_dam_use=IS_dam_use, #1, dam_tot_id_file=dam_tot_id_file, dam_use_id_file=dam_use_id_file, dam_file=dam_file) rapid_manager.run() #generate Qinit from 3hr rapid_manager.generate_qinit_from_past_qout(qinit_6hr_file) #from Hour 144 to 240 (15 time points) are of 6 hour time interval RAPIDinflowECMWF_tool.execute(ecmwf_forecast, weight_table_file, inflow_file_name_6hr, grid_name, "6hr_subset") interval_6hr = 6 * 60 * 60 #6hr duration_6hr = 96 * 60 * 60 #96hrs qout_6hr = os.path.join(node_path, 'Qout_6hr.nc') rapid_manager.update_parameters( ZS_TauR= interval_6hr, #duration of routing procedure (time step of runoff data) ZS_dtR=15 * 60, #internal routing time step ZS_TauM=duration_6hr, #total simulation time ZS_dtM=interval_6hr, #RAPID internal loop time interval ZS_dtF=interval_6hr, # forcing time interval Vlat_file=inflow_file_name_6hr, Qout_file=qout_6hr, BS_opt_dam=BS_opt_dam, IS_dam_tot=IS_dam_tot, IS_dam_use=IS_dam_use, dam_tot_id_file=dam_tot_id_file, dam_use_id_file=dam_use_id_file, dam_file=dam_file) rapid_manager.run() #Merge all files together at the end cv = ConvertRAPIDOutputToCF( rapid_output_file=[outflow_file_name, qout_3hr, qout_6hr], start_datetime=datetime.datetime.strptime( forecast_date_timestep[:11], "%Y%m%d.%H"), time_step=[interval_1hr, interval_3hr, interval_6hr], qinit_file=qinit_file, comid_lat_lon_z_file=comid_lat_lon_z_file, rapid_connect_file=rapid_connect_file, project_name="ECMWF-RAPID Predicted flows by US Army ERDC", output_id_dim_name='rivid', output_flow_var_name='Qout', print_debug=False) cv.convert() except Exception: remove_file(qinit_3hr_file) remove_file(qinit_6hr_file) remove_file(inflow_file_name_1hr) remove_file(inflow_file_name_3hr) remove_file(inflow_file_name_6hr) traceback.print_exc() raise remove_file(qinit_3hr_file) remove_file(qinit_6hr_file) remove_file(inflow_file_name_1hr) remove_file(inflow_file_name_3hr) remove_file(inflow_file_name_6hr) elif forecast_resolution == "LowResFull": #LOW RES - 3hr and 6hr timesteps grid_name = RAPIDinflowECMWF_tool.getGridName(ecmwf_forecast, high_res=False) #generate inflows for each timestep weight_table_file = case_insensitive_file_search( rapid_input_directory, r'weight_{0}\.csv'.format(grid_name)) inflow_file_name_3hr = os.path.join( node_path, 'm3_riv_bas_3hr_%s.nc' % ensemble_number) inflow_file_name_6hr = os.path.join( node_path, 'm3_riv_bas_6hr_%s.nc' % ensemble_number) qinit_6hr_file = os.path.join(node_path, 'Qinit_6hr.csv') try: RAPIDinflowECMWF_tool.execute(ecmwf_forecast, weight_table_file, inflow_file_name_3hr, grid_name, "3hr_subset") #from Hour 0 to 144 (the first 49 time points) are of 3 hr time interval interval_3hr = 3 * 60 * 60 #3hr duration_3hr = 144 * 60 * 60 #144hrs rapid_manager.update_parameters( ZS_TauR= interval_3hr, #duration of routing procedure (time step of runoff data) ZS_dtR=15 * 60, #internal routing time step ZS_TauM=duration_3hr, #total simulation time ZS_dtM=interval_3hr, #RAPID internal loop time interval ZS_dtF=interval_3hr, # forcing time interval Vlat_file=inflow_file_name_3hr, Qout_file=outflow_file_name, Qinit_file=qinit_file, BS_opt_Qinit=BS_opt_Qinit, BS_opt_dam=BS_opt_dam, IS_dam_tot=IS_dam_tot, IS_dam_use=IS_dam_use, dam_tot_id_file=dam_tot_id_file, dam_use_id_file=dam_use_id_file, dam_file=dam_file) rapid_manager.run() #generate Qinit from 3hr rapid_manager.generate_qinit_from_past_qout(qinit_6hr_file) #from Hour 144 to 360 (36 time points) are of 6 hour time interval RAPIDinflowECMWF_tool.execute(ecmwf_forecast, weight_table_file, inflow_file_name_6hr, grid_name, "6hr_subset") interval_6hr = 6 * 60 * 60 #6hr duration_6hr = 216 * 60 * 60 #216hrs qout_6hr = os.path.join(node_path, 'Qout_6hr.nc') rapid_manager.update_parameters( ZS_TauR= interval_6hr, #duration of routing procedure (time step of runoff data) ZS_dtR=15 * 60, #internal routing time step ZS_TauM=duration_6hr, #total simulation time ZS_dtM=interval_6hr, #RAPID internal loop time interval ZS_dtF=interval_6hr, # forcing time interval Vlat_file=inflow_file_name_6hr, Qout_file=qout_6hr, BS_opt_dam=BS_opt_dam, IS_dam_tot=IS_dam_tot, IS_dam_use=IS_dam_use, dam_tot_id_file=dam_tot_id_file, dam_use_id_file=dam_use_id_file, dam_file=dam_file) rapid_manager.run() #Merge all files together at the end cv = ConvertRAPIDOutputToCF( rapid_output_file=[outflow_file_name, qout_6hr], start_datetime=datetime.datetime.strptime( forecast_date_timestep[:11], "%Y%m%d.%H"), time_step=[interval_3hr, interval_6hr], qinit_file=qinit_file, comid_lat_lon_z_file=comid_lat_lon_z_file, rapid_connect_file=rapid_connect_file, project_name="ECMWF-RAPID Predicted flows by US Army ERDC", output_id_dim_name='rivid', output_flow_var_name='Qout', print_debug=False) cv.convert() except Exception: remove_file(qinit_6hr_file) remove_file(inflow_file_name_3hr) remove_file(inflow_file_name_6hr) traceback.print_exc() raise remove_file(qinit_6hr_file) remove_file(inflow_file_name_3hr) remove_file(inflow_file_name_6hr) elif forecast_resolution == "LowRes": #LOW RES - 6hr only inflow_file_name = os.path.join(node_path, 'm3_riv_bas_%s.nc' % ensemble_number) grid_name = RAPIDinflowECMWF_tool.getGridName(ecmwf_forecast, high_res=False) #generate inflows for each timestep weight_table_file = case_insensitive_file_search( rapid_input_directory, r'weight_{0}\.csv'.format(grid_name)) try: print("INFO: Converting ECMWF inflow ...") RAPIDinflowECMWF_tool.execute(ecmwf_forecast, weight_table_file, inflow_file_name, grid_name) interval = 6 * 60 * 60 #6hr duration = 15 * 24 * 60 * 60 #15 days rapid_manager.update_parameters( ZS_TauR= interval, #duration of routing procedure (time step of runoff data) ZS_dtR=15 * 60, #internal routing time step ZS_TauM=duration, #total simulation time Vlat_file=inflow_file_name, Qout_file=outflow_file_name, Qinit_file=qinit_file, BS_opt_Qinit=BS_opt_Qinit, BS_opt_dam=BS_opt_dam, IS_dam_tot=IS_dam_tot, IS_dam_use=IS_dam_use, dam_tot_id_file=dam_tot_id_file, dam_use_id_file=dam_use_id_file, dam_file=dam_file) rapid_manager.run() rapid_manager.make_output_CF_compliant( simulation_start_datetime=datetime.datetime.strptime( forecast_date_timestep[:11], "%Y%m%d.%H"), comid_lat_lon_z_file=comid_lat_lon_z_file, project_name="ECMWF-RAPID Predicted flows by US Army ERDC") except Exception: remove_file(inflow_file_name) traceback.print_exc() raise #clean up remove_file(inflow_file_name) else: raise Exception("ERROR: invalid forecast resolution ...") time_stop_all = datetime.datetime.utcnow() print("INFO: Total time to compute: {0}".format(time_stop_all - time_start_all))
def ecmwf_rapid_multiprocess_worker(node_path, rapid_input_directory, ecmwf_forecast, forecast_date_timestep, watershed, subbasin, rapid_executable_location, init_flow): """ Multiprocess worker function """ time_start_all = datetime.datetime.utcnow() os.chdir(node_path) ensemble_number = get_ensemble_number_from_forecast(ecmwf_forecast) def remove_file(file_name): """ remove file """ try: os.remove(file_name) except OSError: pass #prepare ECMWF file for RAPID print("Running all ECMWF downscaling for watershed: {0}-{1} {2} {3}".format(watershed, subbasin, forecast_date_timestep, ensemble_number)) #set up RAPID manager rapid_connect_file=case_insensitive_file_search(rapid_input_directory, r'rapid_connect\.csv') rapid_manager = RAPID(rapid_executable_location=rapid_executable_location, rapid_connect_file=rapid_connect_file, riv_bas_id_file=case_insensitive_file_search(rapid_input_directory, r'riv_bas_id.*?\.csv'), k_file=case_insensitive_file_search(rapid_input_directory, r'k\.csv'), x_file=case_insensitive_file_search(rapid_input_directory, r'x\.csv'), ZS_dtM=3*60*60, #RAPID internal loop time interval ) rapid_manager.update_reach_number_data() outflow_file_name = os.path.join(node_path, 'Qout_%s_%s_%s.nc' % (watershed.lower(), subbasin.lower(), ensemble_number)) qinit_file = "" BS_opt_Qinit = False if(init_flow): #check for qinit file past_date = (datetime.datetime.strptime(forecast_date_timestep[:11],"%Y%m%d.%H") - \ datetime.timedelta(hours=12)).strftime("%Y%m%dt%H") qinit_file = os.path.join(rapid_input_directory, 'Qinit_%s.csv' % past_date) BS_opt_Qinit = qinit_file and os.path.exists(qinit_file) if not BS_opt_Qinit: qinit_file = "" print("Error: {0} not found. Not initializing ...".format(qinit_file)) try: comid_lat_lon_z_file = case_insensitive_file_search(rapid_input_directory, r'comid_lat_lon_z.*?\.csv') except Exception: comid_lat_lon_z_file = "" print("comid_lat_lon_z_file not found. Not adding lat/lon/z to output file ...") RAPIDinflowECMWF_tool = CreateInflowFileFromECMWFRunoff() forecast_resolution = RAPIDinflowECMWF_tool.dataIdentify(ecmwf_forecast) #determine weight table from resolution if forecast_resolution == "HighRes": #HIGH RES grid_name = RAPIDinflowECMWF_tool.getGridName(ecmwf_forecast, high_res=True) #generate inflows for each timestep weight_table_file = case_insensitive_file_search(rapid_input_directory, r'weight_{0}\.csv'.format(grid_name)) inflow_file_name_1hr = os.path.join(node_path, 'm3_riv_bas_1hr_%s.nc' % ensemble_number) inflow_file_name_3hr = os.path.join(node_path, 'm3_riv_bas_3hr_%s.nc' % ensemble_number) inflow_file_name_6hr = os.path.join(node_path, 'm3_riv_bas_6hr_%s.nc' % ensemble_number) qinit_3hr_file = os.path.join(node_path, 'Qinit_3hr.csv') qinit_6hr_file = os.path.join(node_path, 'Qinit_6hr.csv') try: RAPIDinflowECMWF_tool.execute(ecmwf_forecast, weight_table_file, inflow_file_name_1hr, grid_name, "1hr") #from Hour 0 to 90 (the first 91 time points) are of 1 hr time interval interval_1hr = 1*60*60 #1hr duration_1hr = 90*60*60 #90hrs rapid_manager.update_parameters(ZS_TauR=interval_1hr, #duration of routing procedure (time step of runoff data) ZS_dtR=15*60, #internal routing time step ZS_TauM=duration_1hr, #total simulation time ZS_dtM=interval_1hr, #RAPID internal loop time interval Vlat_file=inflow_file_name_1hr, Qout_file=outflow_file_name, Qinit_file=qinit_file, BS_opt_Qinit=BS_opt_Qinit) rapid_manager.run() #generate Qinit from 1hr rapid_manager.generate_qinit_from_past_qout(qinit_3hr_file) #then from Hour 90 to 144 (19 time points) are of 3 hour time interval RAPIDinflowECMWF_tool.execute(ecmwf_forecast, weight_table_file, inflow_file_name_3hr, grid_name, "3hr_subset") interval_3hr = 3*60*60 #3hr duration_3hr = 54*60*60 #54hrs qout_3hr = os.path.join(node_path,'Qout_3hr.nc') rapid_manager.update_parameters(ZS_TauR=interval_3hr, #duration of routing procedure (time step of runoff data) ZS_dtR=15*60, #internal routing time step ZS_TauM=duration_3hr, #total simulation time ZS_dtM=interval_3hr, #RAPID internal loop time interval Vlat_file=inflow_file_name_3hr, Qout_file=qout_3hr) rapid_manager.run() #generate Qinit from 3hr rapid_manager.generate_qinit_from_past_qout(qinit_6hr_file) #from Hour 144 to 240 (15 time points) are of 6 hour time interval RAPIDinflowECMWF_tool.execute(ecmwf_forecast, weight_table_file, inflow_file_name_6hr, grid_name, "6hr_subset") interval_6hr = 6*60*60 #6hr duration_6hr = 96*60*60 #96hrs qout_6hr = os.path.join(node_path,'Qout_6hr.nc') rapid_manager.update_parameters(ZS_TauR=interval_6hr, #duration of routing procedure (time step of runoff data) ZS_dtR=15*60, #internal routing time step ZS_TauM=duration_6hr, #total simulation time ZS_dtM=interval_6hr, #RAPID internal loop time interval Vlat_file=inflow_file_name_6hr, Qout_file=qout_6hr) rapid_manager.run() #Merge all files together at the end cv = ConvertRAPIDOutputToCF(rapid_output_file=[outflow_file_name, qout_3hr, qout_6hr], start_datetime=datetime.datetime.strptime(forecast_date_timestep[:11], "%Y%m%d.%H"), time_step=[interval_1hr, interval_3hr, interval_6hr], qinit_file=qinit_file, comid_lat_lon_z_file=comid_lat_lon_z_file, rapid_connect_file=rapid_connect_file, project_name="ECMWF-RAPID Predicted flows by US Army ERDC", output_id_dim_name='rivid', output_flow_var_name='Qout', print_debug=False) cv.convert() except Exception: remove_file(qinit_3hr_file) remove_file(qinit_6hr_file) remove_file(inflow_file_name_1hr) remove_file(inflow_file_name_3hr) remove_file(inflow_file_name_6hr) raise remove_file(qinit_3hr_file) remove_file(qinit_6hr_file) remove_file(inflow_file_name_1hr) remove_file(inflow_file_name_3hr) remove_file(inflow_file_name_6hr) elif forecast_resolution == "LowResFull": #LOW RES - 3hr and 6hr timesteps grid_name = RAPIDinflowECMWF_tool.getGridName(ecmwf_forecast, high_res=False) #generate inflows for each timestep weight_table_file = case_insensitive_file_search(rapid_input_directory, r'weight_{0}\.csv'.format(grid_name)) inflow_file_name_3hr = os.path.join(node_path, 'm3_riv_bas_3hr_%s.nc' % ensemble_number) inflow_file_name_6hr = os.path.join(node_path, 'm3_riv_bas_6hr_%s.nc' % ensemble_number) qinit_6hr_file = os.path.join(node_path, 'Qinit_6hr.csv') try: RAPIDinflowECMWF_tool.execute(ecmwf_forecast, weight_table_file, inflow_file_name_3hr, grid_name, "3hr_subset") #from Hour 0 to 144 (the first 49 time points) are of 3 hr time interval interval_3hr = 3*60*60 #3hr duration_3hr = 144*60*60 #144hrs rapid_manager.update_parameters(ZS_TauR=interval_3hr, #duration of routing procedure (time step of runoff data) ZS_dtR=15*60, #internal routing time step ZS_TauM=duration_3hr, #total simulation time ZS_dtM=interval_3hr, #RAPID internal loop time interval Vlat_file=inflow_file_name_3hr, Qout_file=outflow_file_name, Qinit_file=qinit_file, BS_opt_Qinit=BS_opt_Qinit) rapid_manager.run() #generate Qinit from 3hr rapid_manager.generate_qinit_from_past_qout(qinit_6hr_file) #from Hour 144 to 360 (36 time points) are of 6 hour time interval RAPIDinflowECMWF_tool.execute(ecmwf_forecast, weight_table_file, inflow_file_name_6hr, grid_name, "6hr_subset") interval_6hr = 6*60*60 #6hr duration_6hr = 216*60*60 #216hrs qout_6hr = os.path.join(node_path,'Qout_6hr.nc') rapid_manager.update_parameters(ZS_TauR=interval_6hr, #duration of routing procedure (time step of runoff data) ZS_dtR=15*60, #internal routing time step ZS_TauM=duration_6hr, #total simulation time ZS_dtM=interval_6hr, #RAPID internal loop time interval Vlat_file=inflow_file_name_6hr, Qout_file=qout_6hr) rapid_manager.run() #Merge all files together at the end cv = ConvertRAPIDOutputToCF(rapid_output_file=[outflow_file_name, qout_6hr], start_datetime=datetime.datetime.strptime(forecast_date_timestep[:11], "%Y%m%d.%H"), time_step=[interval_3hr, interval_6hr], qinit_file=qinit_file, comid_lat_lon_z_file=comid_lat_lon_z_file, rapid_connect_file=rapid_connect_file, project_name="ECMWF-RAPID Predicted flows by US Army ERDC", output_id_dim_name='rivid', output_flow_var_name='Qout', print_debug=False) cv.convert() except Exception: remove_file(qinit_6hr_file) remove_file(inflow_file_name_3hr) remove_file(inflow_file_name_6hr) raise remove_file(qinit_6hr_file) remove_file(inflow_file_name_3hr) remove_file(inflow_file_name_6hr) elif forecast_resolution == "LowRes": #LOW RES - 6hr only inflow_file_name = os.path.join(node_path, 'm3_riv_bas_%s.nc' % ensemble_number) grid_name = RAPIDinflowECMWF_tool.getGridName(ecmwf_forecast, high_res=False) #generate inflows for each timestep weight_table_file = case_insensitive_file_search(rapid_input_directory, r'weight_{0}\.csv'.format(grid_name)) try: print("Converting ECMWF inflow ...") RAPIDinflowECMWF_tool.execute(ecmwf_forecast, weight_table_file, inflow_file_name, grid_name) interval = 6*60*60 #6hr duration = 15*24*60*60 #15 days rapid_manager.update_parameters(ZS_TauR=interval, #duration of routing procedure (time step of runoff data) ZS_dtR=15*60, #internal routing time step ZS_TauM=duration, #total simulation time Vlat_file=inflow_file_name, Qout_file=outflow_file_name, Qinit_file=qinit_file, BS_opt_Qinit=BS_opt_Qinit) rapid_manager.run() rapid_manager.make_output_CF_compliant(simulation_start_datetime=datetime.datetime.strptime(forecast_date_timestep[:11], "%Y%m%d.%H"), comid_lat_lon_z_file=comid_lat_lon_z_file, project_name="ECMWF-RAPID Predicted flows by US Army ERDC") except Exception: remove_file(inflow_file_name) raise #clean up remove_file(inflow_file_name) else: raise Exception("ERROR: invalid forecast resolution ...") time_stop_all = datetime.datetime.utcnow() print("Total time to compute: {0}".format(time_stop_all-time_start_all))