## print out all configuration options print config.get_algorithm() print config.get_base_values() print config.get_constraint_names() print config.get_design_variable_count() print config.get_design_variable_names() print config.get_design_variable_max_values() print config.get_design_variable_min_values() print config.get_constraint_max_values() print config.get_constraint_min_values() print config.get_objective_names() print config.get_objective_weights() print config.get_property("initial_delta") print config.get_property_keys() print config.get_properties() print config.get_start_value("x") print config.get_start_values() print config.get_step_values() print config.is_discrete_variable("x") ## Do 100 evaluations for i in range(0,100): print "Run " + str(i) e = eval.evaluate(i, [float(i), 2.0, 3.0]) # print out some responses print e.get_objective_value("f") print e.has_gradient("f")
## print out all configuration options print "Algorithm: " + str(config.get_algorithm()) print "Base values: " + str(config.get_base_values()) print "Constraint names: " + str(config.get_constraint_names()) print "Design variable count: " + str(config.get_design_variable_count()) print "Design variable names: " + str(config.get_design_variable_names()) print "Design variable max. values: " + str(config.get_design_variable_max_values()) print "Design variable min. values: " + str(config.get_design_variable_min_values()) print "Constraint max. values: " + str(config.get_constraint_max_values()) print "Constraint min. values: " + str(config.get_constraint_min_values()) print "Objective names: " + str(config.get_objective_names()) print "Objective weights: " + str(config.get_objective_weights()) print "Initial delta (property): " + str(config.get_property("initial_delta")) print "Property keys: " + str(config.get_property_keys()) print "Properties: " + str(config.get_properties()) print "X_0 start value: " + str(config.get_start_value("x_0")) print "Start values: " + str(config.get_start_values()) print "Step values: " + str(config.get_step_values()) print "X_0 is discrete: " + str(config.is_discrete_variable("x_0")) ## Do 100 evaluations for i in range(0,100): print "Run " + str(i) e = eval.evaluate(i, [float(i), 2.0, 3.0]) # print out some responses print "Objective value: " + str( e.get_objective_value("f")) print "Has f a gradient: " + str(e.has_gradient("f"))