示例#1
0
 def __init__(self, params):
     super(IdentityRegressionTask, self).__init__(params)
     with tf.variable_scope('IdentityRegressionTask'):
         self.CreateVariable(
             'm',
             py_utils.WeightParams(shape=[],
                                   init=py_utils.WeightInit.Uniform()))
         self.CreateVariable(
             'b',
             py_utils.WeightParams(shape=[],
                                   init=py_utils.WeightInit.Uniform()))
     self.global_steps = []
     self.metrics = []
     self.result_per_example_tensors = []
示例#2
0
    def CreateTensor(self, t_name):
        p = self.params
        assert t_name not in self._t_names, ('QTensor already registered: %s' %
                                             t_name)
        self._t_names.add(t_name)

        # Create accumulator
        accumulator_name = self._GetAccumulatorNameForTensor(t_name)
        self.RegisterAccumulator(accumulator_name,
                                 _CountedMinMaxAccumulator(p.dtype))
        # Register vars.
        min_pc = py_utils.WeightParams(
            (), py_utils.WeightInit.Constant(p.default_min), p.dtype)
        max_pc = py_utils.WeightParams(
            (), py_utils.WeightInit.Constant(p.default_max), p.dtype)
        self._CreateQStateVar(t_name, 'min', min_pc)
        self._CreateQStateVar(t_name, 'max', max_pc)
 def __init__(self, name):
   self._name = name
   _, self._var = py_utils.CreateVariable(
       name=name,
       params=py_utils.WeightParams([], py_utils.WeightInit.Constant(0),
                                    tf.int64),
       trainable=False)
   self._value = self._var.value() + 0  # Makes a copy.
    def __init__(self, params):
        super(BatchNormLayerNoPadding, self).__init__(params)
        p = self.params
        assert p.name, 'Name of BatchNormLayerNoPadding is not set.'
        p.fprop_dtype = None

        # Skip L-P regularization for these variables.
        collections = [
            self.__class__.__name__ + '_vars', py_utils.SKIP_LP_REGULARIZATION
        ]
        pc = py_utils.WeightParams(shape=[p.dim],
                                   init=py_utils.WeightInit.Constant(0.0),
                                   dtype=p.dtype,
                                   collections=collections)

        with tf.variable_scope(p.name):
            self.CreateVariable('beta', pc)
            # Note, The real gamma to use is 1 + gamma.
            self.CreateVariable('gamma', pc, lambda x: 1.0 + x)

            moving_collections = [
                'moving_vars', tf.GraphKeys.MOVING_AVERAGE_VARIABLES,
                self.__class__.__name__ + '_vars'
            ]
            mva = py_utils.WeightParams(shape=[p.dim],
                                        init=py_utils.WeightInit.Constant(0.0),
                                        dtype=p.dtype,
                                        collections=moving_collections)
            # Two statistics computed from sufficient stats.
            self.CreateVariable('moving_mean', mva, trainable=False)
            mvv = py_utils.WeightParams(shape=[p.dim],
                                        init=py_utils.WeightInit.Constant(1.0),
                                        dtype=p.dtype,
                                        collections=moving_collections)
            self.CreateVariable('moving_variance', mvv, trainable=False)

        # Accumulate bn sufficient stats over micro-batches.
        dim = self.vars.beta.shape[0]
        self.RegisterAccumulator('counts', AddingAccumulator([], p.dtype))
        self.RegisterAccumulator('mean_ss', AddingAccumulator([dim], p.dtype))
        self.RegisterAccumulator('variance_ss',
                                 AddingAccumulator([dim], p.dtype))
示例#5
0
 def __init__(self, params):
   super(BiasLayer, self).__init__(params)
   p = self.params
   with tf.variable_scope(p.name):
     self.CreateVariable(
         'b',
         py_utils.WeightParams(
             shape=[p.dims],
             init=py_utils.WeightInit.Constant(0.0),
             dtype=p.dtype,
             collections=[self.__class__.__name__ + '_vars']))
示例#6
0
 def __init__(self, params):
   super(LinearLayer, self).__init__(params)
   p = self.params
   with tf.variable_scope(p.name):
     self.CreateVariable(
         'w',
         py_utils.WeightParams(
             shape=[p.input_dims, p.output_dims],
             init=p.params_init,
             dtype=p.dtype,
             collections=[self.__class__.__name__ + '_vars']))
        def _Acc(vg):
            """Updating accumulators."""

            v, g = vg
            with tf.variable_scope(v.op.name):
                _, a = py_utils.CreateVariable(
                    'grad_accumulator',
                    py_utils.WeightParams(v.get_shape(),
                                          py_utils.WeightInit.Constant(0.0),
                                          self.params.dtype),
                    trainable=False)
                a = tf.assign_add(a, g)

            return py_utils.VarGrad(v, a)
示例#8
0
    def __init__(self, params):
        super(DevBasedSchedule, self).__init__(params)

        p = self.params

        with tf.variable_scope(p.name):
            wp = py_utils.WeightParams(shape=[],
                                       init=py_utils.WeightInit.Constant(1.0),
                                       collections=['DevBasedSchedule_vars'],
                                       dtype=tf.float32)
            _, self._cur_factor, = py_utils.CreateVariable('cur_factor',
                                                           wp,
                                                           trainable=False)
            wp = py_utils.WeightParams(shape=[],
                                       init=py_utils.WeightInit.Constant(0),
                                       collections=['DevBasedSchedule_vars'],
                                       dtype=tf.int64)
            _, self._ref_step, = py_utils.CreateVariable('ref_step',
                                                         wp,
                                                         trainable=False)

            self._metric_history = early_stop.MetricHistory(p.metric_history)
            self._best_step = ops.best_step(self._metric_history.hist_file,
                                            p.tolerance)
    def __init__(self, params):
        super(DeterministicWeightsLayer, self).__init__(params)
        p = self.params
        if not p.name:
            raise ValueError('Layer must have a specified name!')

        assert p.num_sources > 0, ('Must specify num_sources > 0.')
        params_init = py_utils.WeightInit.Constant(0.0)
        # Weights to be learned.
        pw = py_utils.WeightParams(
            shape=[p.num_sources],
            init=params_init,
            dtype=p.dtype,
            collections=[self.__class__.__name__ + '_vars'])
        with tf.variable_scope(p.name):
            self.CreateVariable('sum_weight', pw)
        p.dropout_tpl.name = 'dropout'
        self.CreateChild('weighted_merger_dropout', p.dropout_tpl)
示例#10
0
 def __init__(self, params):
   super(SoftCondLayer, self).__init__(params)
   p = self.params
   assert p.name
   assert p.num_experts
   assert p.cond_dim
   with tf.variable_scope(p.name):
     # Create Variables for task weight mapping.
     collections = [
         self.__class__.__name__ + '_vars',
     ]
     w_p = py_utils.WeightParams(
         shape=[p.cond_dim, p.num_experts],
         init=p.params_init,  # TODO(huangyp): try zero init instead.
         dtype=p.dtype,
         collections=collections)
     self.CreateVariable('w', w_p)
     # Prepends p.num_experts to the tensor shape of every variable created
     # by p.body.
     with py_utils.VariableShapePrefixContext(p.num_experts):
       self.CreateChild('body', p.body)