def ProgramSchedule(self): p = program_lib.MLPerfProgramScheduleForTask( train_dataset_name='Train', train_steps_per_loop=20, decode_dataset_name='Test', decode_steps_per_loop=1, num_epochs_per_session_run=4, warmup_seconds=0) p.train_executions_per_eval = 1 p.ml_perf.benchmark_name = 'transformer' p.ml_perf.steps_per_epoch = 1 p.ml_perf.decoder_metric_name = 'ml_perf_bleu' # Dummy value just to see run_stop/success. p.ml_perf.decoder_metric_success_threshold = -10.0 p.ml_perf.max_sequence_length = 80 p.ml_perf.global_batch_size = 64 p.ml_perf.optimizer_name = 'adam' p.ml_perf.opt_adam_beta_1 = 0.9 p.ml_perf.opt_adam_beta_2 = 0.98 p.ml_perf.opt_adam_epsilon = 1e-9 p.ml_perf.base_learning_rate = 2.0 p.ml_perf.warmup_steps = self.WARMUP_STEPS p.ml_perf.train_samples = 566340 p.ml_perf.eval_samples = 3003 return p
def ProgramSchedule(self): p = program_lib.MLPerfProgramScheduleForTask( train_dataset_name='Train', train_steps_per_loop=1107, decode_dataset_name='Test', decode_steps_per_loop=1, num_epochs_per_session_run=4) p.train_executions_per_eval = 1 # For compliance logging. p.ml_perf.benchmark_name = 'transformer' p.ml_perf.steps_per_epoch = self.STEPS_PER_EPOCH p.ml_perf.decoder_metric_name = 'ml_perf_bleu' p.ml_perf.decoder_metric_success_threshold = 0.25 p.ml_perf.max_sequence_length = 80 p.ml_perf.global_batch_size = 512 p.ml_perf.optimizer_name = 'adam' p.ml_perf.opt_adam_beta_1 = 0.9 p.ml_perf.opt_adam_beta_2 = 0.98 p.ml_perf.opt_adam_epsilon = 1e-9 p.ml_perf.base_learning_rate = self.LEARNING_RATE p.ml_perf.warmup_steps = self.WARMUP_STEPS p.ml_perf.train_samples = 566340 p.ml_perf.eval_samples = 3003 return p