def _SummarizeTensor(self, t_name): min_var = self._GetQStateVar(t_name, 'min') max_var = self._GetQStateVar(t_name, 'max') # foo/q/somet_min:0 -> foo/q/somet_min summary_name_min = min_var.name.split(':')[0] summary_name_max = max_var.name.split(':')[0] summary_utils.scalar(summary_name_min, min_var) summary_utils.scalar(summary_name_max, max_var)
def AddSummary(self, lr, optimizer, var_grad): p = self.params summary_utils.scalar('adagrad_lr', lr) for v, _ in var_grad.Flatten(): slot = optimizer.get_slot(v, 'accumulator') assert slot is not None summary_utils.scalar('optimizer/adagrad_accum_%s' % v.name, tf.reduce_mean(slot))
def PostTrainingStepUpdate(self, global_step): summary_utils.scalar('cap', self._Value(global_step)) return tf.no_op()
def AddSummary(self, lr, optimizer, var_grad): summary_utils.scalar('adam_lr', lr)