def monitorDir(self): """ Monitor the given directory and show new FF files on the screen. """ # Create a list of FF files in the given directory ff_list = [] showing_empty = False # Repeat until the process is killed from the outside while not self.exit.is_set(): # Monitor the given folder for new FF files new_ffs = [file_name for file_name in sorted(os.listdir(self.dir_path)) \ if validFFName(file_name) and (file_name not in ff_list)] # If there are no FF files in the directory, show an empty image if (not len(ff_list)) and (not len(new_ffs)) and (not showing_empty): text = "No FF files found in the given directory as of yet: {:s}".format(self.dir_path) img = np.zeros((720, 1280)) showing_empty = None # If there are new FF files, update the image if len(new_ffs): new_ff = new_ffs[-1] text = new_ff # Load the new FF ff = readFF(self.dir_path, new_ff, verbose=False) if ff is not None: img = ff.maxpixel else: time.sleep(self.update_interval) continue showing_empty = False # Add new FF files to the list ff_list += new_ffs # If there are no FF files, wait else: if showing_empty is not None: time.sleep(self.update_interval) continue if showing_empty is not True: self.updateImage(img, text, self.update_interval, banner_text=self.banner_text) # Set the proper flag if not showing any FF files if showing_empty is None: showing_empty = True
def startSlideshow(self): """ Start a slideshow. """ # Make a list of FF files in the given directory ff_list = [ file_name for file_name in sorted(os.listdir(self.dir_path)) if validFFName(file_name) ] # Exit if no FF files were found if not ff_list: print("No FF files in the given directory to use for a slideshow!") self.exit.set() return None # Go through the list of FF files and show them on the screen first_run = True while not self.exit.is_set(): for ff_name in ff_list: # Stop the loop if the slideshow should stop if self.exit.is_set(): break # Load the FF file ff = readFF(self.dir_path, ff_name, verbose=False) text = ff_name # If the FF files was loaded, show the maxpixel if ff is not None: img = ff.maxpixel else: # If an FF files could not be loaded on the first run, show an empty image if first_run: img = np.zeros((720, 1280)) text = "The FF file {:s} could not be loaded.".format( ff_name) # Otherwise, just wait one more pause interval else: time.sleep(self.slideshow_pause) continue # Update the image on the screen self.updateImage(img, text, self.slideshow_pause, banner_text=self.banner_text) first_run = False
def batchFFtoImage(dir_path, fmt): # Go through all files in the given folder for file_name in os.listdir(dir_path): # Check if the file is an FF file if validFFName(file_name): # Read the FF file ff = readFF(dir_path, file_name) # Skip the file if it could not be read if ff is None: continue # Make a filename for the image img_file_name = file_name.replace('fits', '') + fmt print('Saving: ', img_file_name) # Save the maxpixel to disk saveImage(os.path.join(dir_path, img_file_name), ff.maxpixel)
def makeFlat(dir_path, config, nostars=False, use_images=False): """ Makes a flat field from the files in the given folder. CALSTARS file is needed to estimate the quality of every image by counting the number of detected stars. Arguments: dir_path: [str] Path to the directory which contains the FF files and a CALSTARS file. config: [config object] Keyword arguments: nostars: [bool] If True, all files will be taken regardless of if they have stars on them or not. use_images: [bool] Use image files instead of FF files. False by default. Return: [2d ndarray] Flat field image as a numpy array. If the flat generation failed, None will be returned. """ # If only images are used, then don't look for a CALSTARS file if use_images: nostars = True # Load the calstars file if it should be used if not nostars: # Find the CALSTARS file in the given folder calstars_file = None for calstars_file in os.listdir(dir_path): if ('CALSTARS' in calstars_file) and ('.txt' in calstars_file): break if calstars_file is None: print('CALSTARS file could not be found in the given directory!') return None # Load the calstars file calstars_list = CALSTARS.readCALSTARS(dir_path, calstars_file) # Convert the list to a dictionary calstars = {ff_file: star_data for ff_file, star_data in calstars_list} print('CALSTARS file: ' + calstars_file + ' loaded!') # A list of FF files which have any stars on them calstars_ff_files = [line[0] for line in calstars_list] else: calstars = {} # Use image files if use_images: # Find the file type with the highest file frequency in the given folder file_extensions = [] for file_name in os.listdir(dir_path): file_ext = file_name.split('.')[-1] if file_ext.lower() in ['jpg', 'png', 'bmp']: file_extensions.append(file_ext) # Get only the most frequent file type file_freqs = np.unique(file_extensions, return_counts=True) most_freq_type = file_freqs[0][0] print('Using image type:', most_freq_type) # Take only files of that file type ff_list = [file_name for file_name in sorted(os.listdir(dir_path)) \ if file_name.lower().endswith(most_freq_type)] # Use FF files else: ff_list = [] # Get a list of FF files in the folder for file_name in os.listdir(dir_path): if validFFName(file_name) and ((file_name in calstars_ff_files) or nostars): ff_list.append(file_name) # Check that there are any FF files in the folder if not ff_list: print('No valid FF files in the selected folder!') return None ff_list_good = [] ff_times = [] # Take only those FF files with enough stars on them for ff_name in ff_list: if (ff_name in calstars) or nostars: # Disable requiring minimum number of stars if specified if not nostars: # Get the number of stars detected on the FF image ff_nstars = len(calstars[ff_name]) else: ff_nstars = 0 # Check if the number of stars on the image is over the detection threshold if (ff_nstars > config.ff_min_stars) or nostars: # Add the FF file to the list of FF files to be used to make a flat ff_list_good.append(ff_name) # If images are used, don't compute the time if use_images: ff_time = 0 else: # Calculate the time of the FF files ff_time = date2JD(*getMiddleTimeFF(ff_name, config.fps, ret_milliseconds=True)) ff_times.append(ff_time) # Check that there are enough good FF files in the folder if (len(ff_times) < config.flat_min_imgs) and (not nostars): print('Not enough FF files have enough stars on them!') return None # Make sure the files cover at least 2 hours if (not (max(ff_times) - min(ff_times))*24 > 2) and (not nostars): print('Good FF files cover less than 2 hours!') return None # Sample FF files if there are more than 200 max_ff_flat = 200 if len(ff_list_good) > max_ff_flat: ff_list_good = sorted(random.sample(ff_list_good, max_ff_flat)) print('Using {:d} files for flat...'.format(len(ff_list_good))) c = 0 img_list = [] median_list = [] # Median combine all good FF files for i in range(len(ff_list_good)): # Load 10 files at the time and median combine them, which conserves memory if c < 10: # Use images if use_images: img = scipy.ndimage.imread(os.path.join(dir_path, ff_list_good[i]), -1) # Use FF files else: ff = readFF(dir_path, ff_list_good[i]) # Skip the file if it is corruped if ff is None: continue img = ff.avepixel img_list.append(img) c += 1 else: img_list = np.array(img_list) # Median combine the loaded 10 (or less) images ff_median = np.median(img_list, axis=0) median_list.append(ff_median) img_list = [] c = 0 # If there are more than 1 calculated median image, combine them if len(median_list) > 1: # Median combine all median images median_list = np.array(median_list) ff_median = np.median(median_list, axis=0) else: if len(median_list) > 0: ff_median = median_list[0] else: ff_median = np.median(np.array(img_list), axis=0) # Stretch flat to 0-255 ff_median = ff_median/np.max(ff_median)*255 # Convert the flat to 8 bits ff_median = ff_median.astype(np.uint8) return ff_median
def __init__(self, dir_path, img_type): # Take FF files if the the image type was not given if img_type is None: # Get all FF files in the given folder self.filenames = sorted([os.path.abspath(os.path.join(dir_path, filename)) for filename \ in os.listdir(dir_path) if validFFName(filename)]) else: # Get all images of the given extension self.filenames = sorted([os.path.abspath(os.path.join(dir_path, filename)) for filename \ in os.listdir(dir_path) if filename.lower().endswith(img_type.lower())]) # If no files were given, take if (self.filenames is None) or (len(self.filenames) == 0): print('No files in the directory that match the pattern!') sys.exit() self.files = self.filenames # Load an image for filename in self.filenames: if validFFName(os.path.basename(filename)): self.im8u = readFF(*os.path.split(filename)).maxpixel else: self.im8u = cv2.imread(filename, cv2.IMREAD_COLOR) break if VERBOSE: print(self.im8u.shape) self.HEIGHT = self.im8u.shape[0] self.WIDTH = self.im8u.shape[1] if VERBOSE: print("Width =", self.WIDTH, "Height = ", self.HEIGHT) if self.WIDTH > 2600: self.scale = 0.25 elif self.WIDTH > 1280: self.scale = 0.5 else: self.scale = 1.0 if len(self.im8u.shape) == 3: self.im8u_grey = cv2.cvtColor(self.im8u, cv2.COLOR_BGR2GRAY) self.last_im8u = cv2.cvtColor(self.im8u, cv2.COLOR_BGR2GRAY) else: self.im8u_grey = np.copy(self.im8u) self.last_im8u = np.copy(self.im8u) self.diff = np.copy(self.im8u) self.prev_image = np.copy(self.im8u) self.short_max_im8u = np.copy(self.im8u) self.long_max_im8u = np.copy(self.im8u) self.short_coadd = np.copy(self.im8u) self.short_coadd_scaled = np.copy(self.im8u) self.trigger_list = [] self.flip = False self.contrast = False self.clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8)) # Set the font for overlay self.font = cv2.FONT_HERSHEY_SIMPLEX self.index = 0 self.pause = False self.short_max_im8u.fill(0) cv2.imshow('CheckNight', cv2.resize(self.short_max_im8u, (0,0), fx=self.scale, fy=self.scale)) cv2.moveWindow("CheckNight", 0, 0)
def __init__(self, dir_path, img_type): # Take FF files if the the image type was not given if img_type is None: # Get all FF files in the given folder self.filenames = [os.path.abspath(os.path.join(dir_path, filename)) for filename \ in os.listdir(dir_path) if validFFName(filename)] else: # Get all images of the given extension self.filenames = [os.path.abspath(os.path.join(dir_path, filename)) for filename \ in os.listdir(dir_path) if filename.lower().endswith(img_type.lower())] # If no files were given, take if (self.filenames is None) or (len(self.filenames) == 0): print('No files in the directory that match the pattern!') sys.exit() self.files = self.filenames # Load an image for filename in self.filenames: if validFFName(os.path.basename(filename)): self.im8u = readFF(*os.path.split(filename)).maxpixel else: self.im8u = cv2.imread(filename, cv2.IMREAD_COLOR) break if VERBOSE: print(self.im8u.shape) self.HEIGHT = self.im8u.shape[0] self.WIDTH = self.im8u.shape[1] if VERBOSE: print("Width =", self.WIDTH, "Height = ", self.HEIGHT) if self.WIDTH > 2600: self.scale = 0.25 elif self.WIDTH > 1280: self.scale = 0.5 else: self.scale = 1.0 if len(self.im8u.shape) == 3: self.im8u_grey = cv2.cvtColor(self.im8u, cv2.COLOR_BGR2GRAY) self.last_im8u = cv2.cvtColor(self.im8u, cv2.COLOR_BGR2GRAY) else: self.im8u_grey = np.copy(self.im8u) self.last_im8u = np.copy(self.im8u) self.diff = np.copy(self.im8u) self.prev_image = np.copy(self.im8u) self.short_max_im8u = np.copy(self.im8u) self.long_max_im8u = np.copy(self.im8u) self.short_coadd = np.copy(self.im8u) self.short_coadd_scaled = np.copy(self.im8u) self.trigger_list = [] self.flip = False self.contrast = False self.clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8)) # Set the font for overlay self.font = cv2.FONT_HERSHEY_SIMPLEX self.index = 0 self.pause = False self.short_max_im8u.fill(0) cv2.imshow('CheckNight', cv2.resize(self.short_max_im8u, (0,0), fx=self.scale, fy=self.scale)) cv2.moveWindow("CheckNight", 0, 0)
def trackStack(dir_path, config, border=5, background_compensation=True, hide_plot=False): """ Generate a stack with aligned stars, so the sky appears static. The folder should have a platepars_all_recalibrated.json file. Arguments: dir_path: [str] Path to the directory with image files. config: [Config instance] Keyword arguments: border: [int] Border around the image to exclude (px). background_compensation: [bool] Normalize the background by applying a median filter to avepixel and use it as a flat field. Slows down the procedure and may sometimes introduce artifacts. True by default. """ # Load recalibrated platepars, if they exist ### # Find recalibrated platepars file per FF file platepars_recalibrated_file = None for file_name in os.listdir(dir_path): if file_name == config.platepars_recalibrated_name: platepars_recalibrated_file = file_name break # Load all recalibrated platepars if the file is available recalibrated_platepars = None if platepars_recalibrated_file is not None: with open(os.path.join(dir_path, platepars_recalibrated_file)) as f: recalibrated_platepars = json.load(f) print( 'Loaded recalibrated platepars JSON file for the calibration report...' ) # ### # If the recalib platepars is not found, stop if recalibrated_platepars is None: print("The {:s} file was not found!".format( config.platepars_recalibrated_name)) return False # Get a list of FF files in the folder ff_list = [] for file_name in os.listdir(dir_path): if validFFName(file_name): ff_list.append(file_name) # Take the platepar with the middle time as the reference one ff_found_list = [] jd_list = [] for ff_name_temp in recalibrated_platepars: if ff_name_temp in ff_list: # Compute the Julian date of the FF middle dt = getMiddleTimeFF(ff_name_temp, config.fps, ret_milliseconds=True) jd = date2JD(*dt) jd_list.append(jd) ff_found_list.append(ff_name_temp) if len(jd_list) < 2: print("Not more than 1 FF image!") return False # Take the FF file with the middle JD jd_list = np.array(jd_list) jd_middle = np.mean(jd_list) jd_mean_index = np.argmin(np.abs(jd_list - jd_middle)) ff_mid = ff_found_list[jd_mean_index] # Load the middle platepar as the reference one pp_ref = Platepar() pp_ref.loadFromDict(recalibrated_platepars[ff_mid], use_flat=config.use_flat) # Try loading the mask mask_path = None if os.path.exists(os.path.join(dir_path, config.mask_file)): mask_path = os.path.join(dir_path, config.mask_file) # Try loading the default mask elif os.path.exists(config.mask_file): mask_path = os.path.abspath(config.mask_file) # Load the mask if given mask = None if mask_path is not None: mask = loadMask(mask_path) print("Loaded mask:", mask_path) # If the shape of the mask doesn't fit, init an empty mask if mask is not None: if (mask.img.shape[0] != pp_ref.Y_res) or (mask.img.shape[1] != pp_ref.X_res): print("Mask is of wrong shape!") mask = None if mask is None: mask = MaskStructure(255 + np.zeros( (pp_ref.Y_res, pp_ref.X_res), dtype=np.uint8)) # Compute the middle RA/Dec of the reference platepar _, ra_temp, dec_temp, _ = xyToRaDecPP([jd2Date(jd_middle)], [pp_ref.X_res / 2], [pp_ref.Y_res / 2], [1], pp_ref, extinction_correction=False) ra_mid, dec_mid = ra_temp[0], dec_temp[0] # Go through all FF files and find RA/Dec of image corners to find the size of the stack image ### # List of corners x_corns = [0, pp_ref.X_res, 0, pp_ref.X_res] y_corns = [0, 0, pp_ref.Y_res, pp_ref.Y_res] ra_list = [] dec_list = [] for ff_temp in ff_found_list: # Load the recalibrated platepar pp_temp = Platepar() pp_temp.loadFromDict(recalibrated_platepars[ff_temp], use_flat=config.use_flat) for x_c, y_c in zip(x_corns, y_corns): _, ra_temp, dec_temp, _ = xyToRaDecPP( [getMiddleTimeFF(ff_temp, config.fps, ret_milliseconds=True)], [x_c], [y_c], [1], pp_ref, extinction_correction=False) ra_c, dec_c = ra_temp[0], dec_temp[0] ra_list.append(ra_c) dec_list.append(dec_c) # Compute the angular separation from the middle equatorial coordinates of the reference image to all # RA/Dec corner coordinates ang_sep_list = [] for ra_c, dec_c in zip(ra_list, dec_list): ang_sep = np.degrees( angularSeparation(np.radians(ra_mid), np.radians(dec_mid), np.radians(ra_c), np.radians(dec_c))) ang_sep_list.append(ang_sep) # Find the maximum angular separation and compute the image size using the plate scale # The image size will be resampled to 1/2 of the original size to avoid interpolation scale = 0.5 ang_sep_max = np.max(ang_sep_list) img_size = int(scale * 2 * ang_sep_max * pp_ref.F_scale) # # Create the stack platepar with no distortion and a large image size pp_stack = copy.deepcopy(pp_ref) pp_stack.resetDistortionParameters() pp_stack.X_res = img_size pp_stack.Y_res = img_size pp_stack.F_scale *= scale pp_stack.refraction = False # Init the image avg_stack_sum = np.zeros((img_size, img_size), dtype=float) avg_stack_count = np.zeros((img_size, img_size), dtype=int) max_deaveraged = np.zeros((img_size, img_size), dtype=np.uint8) # Load individual FFs and map them to the stack for i, ff_name in enumerate(ff_found_list): print("Stacking {:s}, {:.1f}% done".format( ff_name, 100 * i / len(ff_found_list))) # Read the FF file ff = readFF(dir_path, ff_name) # Load the recalibrated platepar pp_temp = Platepar() pp_temp.loadFromDict(recalibrated_platepars[ff_name], use_flat=config.use_flat) # Make a list of X and Y image coordinates x_coords, y_coords = np.meshgrid( np.arange(border, pp_ref.X_res - border), np.arange(border, pp_ref.Y_res - border)) x_coords = x_coords.ravel() y_coords = y_coords.ravel() # Map image pixels to sky jd_arr, ra_coords, dec_coords, _ = xyToRaDecPP( len(x_coords) * [getMiddleTimeFF(ff_name, config.fps, ret_milliseconds=True)], x_coords, y_coords, len(x_coords) * [1], pp_temp, extinction_correction=False) # Map sky coordinates to stack image coordinates stack_x, stack_y = raDecToXYPP(ra_coords, dec_coords, jd_middle, pp_stack) # Round pixel coordinates stack_x = np.round(stack_x, decimals=0).astype(int) stack_y = np.round(stack_y, decimals=0).astype(int) # Cut the image to limits filter_arr = (stack_x > 0) & (stack_x < img_size) & (stack_y > 0) & ( stack_y < img_size) x_coords = x_coords[filter_arr].astype(int) y_coords = y_coords[filter_arr].astype(int) stack_x = stack_x[filter_arr] stack_y = stack_y[filter_arr] # Apply the mask to maxpixel and avepixel maxpixel = copy.deepcopy(ff.maxpixel) maxpixel[mask.img == 0] = 0 avepixel = copy.deepcopy(ff.avepixel) avepixel[mask.img == 0] = 0 # Compute deaveraged maxpixel max_deavg = maxpixel - avepixel # Normalize the backgroud brightness by applying a large-kernel median filter to avepixel if background_compensation: # # Apply a median filter to the avepixel to get an estimate of the background brightness # avepixel_median = scipy.ndimage.median_filter(ff.avepixel, size=101) avepixel_median = cv2.medianBlur(ff.avepixel, 301) # Make sure to avoid zero division avepixel_median[avepixel_median < 1] = 1 # Normalize the avepixel by subtracting out the background brightness avepixel = avepixel.astype(float) avepixel /= avepixel_median avepixel *= 50 # Normalize to a good background value, which is usually 50 avepixel = np.clip(avepixel, 0, 255) avepixel = avepixel.astype(np.uint8) # plt.imshow(avepixel, cmap='gray', vmin=0, vmax=255) # plt.show() # Add the average pixel to the sum avg_stack_sum[stack_y, stack_x] += avepixel[y_coords, x_coords] # Increment the counter image where the avepixel is not zero ones_img = np.ones_like(avepixel) ones_img[avepixel == 0] = 0 avg_stack_count[stack_y, stack_x] += ones_img[y_coords, x_coords] # Set pixel values to the stack, only take the max values max_deaveraged[stack_y, stack_x] = np.max(np.dstack( [max_deaveraged[stack_y, stack_x], max_deavg[y_coords, x_coords]]), axis=2) # Compute the blended avepixel background stack_img = avg_stack_sum stack_img[avg_stack_count > 0] /= avg_stack_count[avg_stack_count > 0] stack_img += max_deaveraged stack_img = np.clip(stack_img, 0, 255) stack_img = stack_img.astype(np.uint8) # Crop image non_empty_columns = np.where(stack_img.max(axis=0) > 0)[0] non_empty_rows = np.where(stack_img.max(axis=1) > 0)[0] crop_box = (np.min(non_empty_rows), np.max(non_empty_rows), np.min(non_empty_columns), np.max(non_empty_columns)) stack_img = stack_img[crop_box[0]:crop_box[1] + 1, crop_box[2]:crop_box[3] + 1] # Plot and save the stack ### dpi = 200 plt.figure(figsize=(stack_img.shape[1] / dpi, stack_img.shape[0] / dpi), dpi=dpi) plt.imshow(stack_img, cmap='gray', vmin=0, vmax=256, interpolation='nearest') plt.axis('off') plt.gca().get_xaxis().set_visible(False) plt.gca().get_yaxis().set_visible(False) plt.xlim([0, stack_img.shape[1]]) plt.ylim([stack_img.shape[0], 0]) # Remove the margins (top and right are set to 0.9999, as setting them to 1.0 makes the image blank in # some matplotlib versions) plt.subplots_adjust(left=0, bottom=0, right=0.9999, top=0.9999, wspace=0, hspace=0) filenam = os.path.join(dir_path, os.path.basename(dir_path) + "_track_stack.jpg") plt.savefig(filenam, bbox_inches='tight', pad_inches=0, dpi=dpi) # if hide_plot is False: plt.show()
flat = None if cml_args.flat: flat = loadFlat(*os.path.split(cml_args.flat)) corrected_meteor_list = [] # Find matching FF files in the directory for entry in meteor_list: ftp_ff_name, meteor_No, rho, phi, meteor_meas = entry # Find the matching FTPdetectinfo file in the directory for ff_name in sorted(os.listdir(dir_path)): # Reject all non-FF files if not validFFName(ff_name): continue # Reject all FF files which do not match the name in the FTPdetecinfo if ff_name != ftp_ff_name: continue print('Correcting for saturation:', ff_name) # Load the FF file ff = readFF(dir_path, ff_name) # Apply the flat to avepixel if flat: avepixel = applyFlat(ff.avepixel, flat)
font = ImageFont.load_default() # Create temporary directory dir_tmp_path = os.path.join(dir_path, "temp_img_dir") if os.path.exists(dir_tmp_path): shutil.rmtree(dir_tmp_path) print("Deleted directory : " + dir_tmp_path) mkdirP(dir_tmp_path) print("Created directory : " + dir_tmp_path) print("Preparing files for the timelapse...") c = 0 ff_list = [ff_name for ff_name in sorted(os.listdir(dir_path)) if validFFName(ff_name)] for file_name in ff_list: # Read the FF file ff = readFF(dir_path, file_name) # Skip the file if it could not be read if ff is None: continue # Get the timestamp from the FF name timestamp = filenameToDatetime(file_name).strftime("%Y-%m-%d %H:%M:%S") # Get id cam from the file name # e.g. FF499_20170626_020520_353_0005120.bin
arg_parser.add_argument('file_format', nargs=1, metavar='FILE_FORMAT', type=str, \ help='File format of the image, e.g. jpg or png.') # Parse the command line arguments cml_args = arg_parser.parse_args() ######################### dir_path = cml_args.dir_path[0] # Go through all files in the given folder for file_name in os.listdir(dir_path): # Check if the file is an FF file if validFFName(file_name): # Read the FF file ff = readFF(dir_path, file_name) # Skip the file if it could not be read if ff is None: continue # Make a filename for the image img_file_name = file_name.replace('fits', '') + cml_args.file_format[0] print('Saving: ', img_file_name) # Save the maxpixel to disk scipy.misc.imsave(os.path.join(dir_path, img_file_name), ff.maxpixel)
initLogging('detection_') log = logging.getLogger("logger") ###### if not len(sys.argv) == 2: print("Usage: python -m RMS.ExtractStars /path/to/bin/files/") sys.exit() # Get paths to every FF bin file in a directory ff_dir = sys.argv[1].replace('"', '') ff_dir = os.path.abspath(ff_dir) ff_list = [ff_name for ff_name in sorted(os.listdir(ff_dir)) if validFFName(ff_name)] # Check if there are any file in the directory if(len(ff_list) == None): print("No files found!") sys.exit() # Try loading a flat field image flat_struct = None if config.use_flat: # Check if there is flat in the data directory if os.path.exists(os.path.join(ff_dir, config.flat_file)):
def makeFlat(dir_path, config): """ Makes a flat field from the files in the given folder. CALSTARS file is needed to estimate the quality of every image by counting the number of detected stars. Arguments: dir_path: [str] Path to the directory which contains the FF files and a CALSTARS file. config: [config object] Return: [2d ndarray] Flat field image as a numpy array. If the flat generation failed, None will be returned. """ # Find the CALSTARS file in the given folder calstars_file = None for calstars_file in os.listdir(dir_path): if ('CALSTARS' in calstars_file) and ('.txt' in calstars_file): break if calstars_file is None: print('CALSTARS file could not be found in the given directory!') return None # Load the calstars file calstars_list = CALSTARS.readCALSTARS(dir_path, calstars_file) # Convert the list to a dictionary calstars = {ff_file: star_data for ff_file, star_data in calstars_list} print('CALSTARS file: ' + calstars_file + ' loaded!') # A list of FF files which have any stars on them calstars_ff_files = [line[0] for line in calstars_list] ff_list = [] # Get a list of FF files in the folder for file_name in os.listdir(dir_path): if validFFName(file_name) and (file_name in calstars_ff_files): ff_list.append(file_name) # Check that there are any FF files in the folder if not ff_list: print('No FF files in the selected folder!') return None ff_list_good = [] ff_times = [] # Take only those FF files with enough stars on them for ff_name in ff_list: if not validFFName(ff_name): continue if ff_name in calstars: # Get the number of stars detected on the FF image ff_nstars = len(calstars[ff_name]) # Check if the number of stars on the image is over the detection threshold if ff_nstars > config.ff_min_stars: # Add the FF file to the list of FF files to be used to make a flat ff_list_good.append(ff_name) # Calculate the time of the FF files ff_time = date2JD(*getMiddleTimeFF( ff_name, config.fps, ret_milliseconds=True)) ff_times.append(ff_time) # Check that there are enough good FF files in the folder if len(ff_times) < config.flat_min_imgs: print('Not enough FF files have enough stars on them!') return None # Make sure the files cover at least 2 hours if not (max(ff_times) - min(ff_times)) * 24 > 2: print('Good FF files cover less than 2 hours!') return None # Sample FF files if there are more than 200 max_ff_flat = 200 if len(ff_list_good) > max_ff_flat: ff_list_good = sorted(random.sample(ff_list_good, max_ff_flat)) print('Using {:d} files for flat...'.format(len(ff_list_good))) c = 0 ff_avg_list = [] median_list = [] # Median combine all good FF files for i in range(len(ff_list_good)): # Load 10 files at the time and median combine them, which conserves memory if c < 10: ff = readFF(dir_path, ff_list_good[i]) ff_avg_list.append(ff.avepixel) c += 1 else: ff_avg_list = np.array(ff_avg_list) # Median combine the loaded 10 (or less) images ff_median = np.median(ff_avg_list, axis=0) median_list.append(ff_median) ff_avg_list = [] c = 0 # If there are more than 1 calculated median image, combine them if len(median_list) > 1: # Median combine all median images median_list = np.array(median_list) ff_median = np.median(median_list, axis=0) else: ff_median = median_list[0] # Stretch flat to 0-255 ff_median = ff_median / np.max(ff_median) * 255 # Convert the flat to 8 bits ff_median = ff_median.astype(np.uint8) return ff_median
def generateTimelapse(dir_path, nodel): t1 = datetime.datetime.utcnow() # Load the font for labeling try: font = ImageFont.truetype("/usr/share/fonts/dejavu/DejaVuSans.ttf", 18) except: font = ImageFont.load_default() # Create temporary directory dir_tmp_path = os.path.join(dir_path, "temp_img_dir") if os.path.exists(dir_tmp_path): shutil.rmtree(dir_tmp_path) print("Deleted directory : " + dir_tmp_path) mkdirP(dir_tmp_path) print("Created directory : " + dir_tmp_path) print("Preparing files for the timelapse...") c = 0 ff_list = [ ff_name for ff_name in sorted(os.listdir(dir_path)) if validFFName(ff_name) ] for file_name in ff_list: # Read the FF file ff = readFF(dir_path, file_name) # Skip the file if it could not be read if ff is None: continue # Get the timestamp from the FF name timestamp = filenameToDatetime(file_name).strftime("%Y-%m-%d %H:%M:%S") # Get id cam from the file name # e.g. FF499_20170626_020520_353_0005120.bin # or FF_CA0001_20170626_020520_353_0005120.fits file_split = file_name.split('_') # Check the number of list elements, and the new fits format has one more underscore i = 0 if len(file_split[0]) == 2: i = 1 camid = file_split[i] # Make a filename for the image, continuous count %04d img_file_name = 'temp_{:04d}.jpg'.format(c) img = ff.maxpixel # Draw text to image font = cv2.FONT_HERSHEY_SIMPLEX text = camid + " " + timestamp + " UTC" cv2.putText(img, text, (10, ff.nrows - 6), font, 0.4, (255, 255, 255), 1, cv2.LINE_AA) # Save the labelled image to disk cv2.imwrite(os.path.join(dir_tmp_path, img_file_name), img, [cv2.IMWRITE_JPEG_QUALITY, 100]) c = c + 1 # Print elapsed time if c % 30 == 0: print("{:>5d}/{:>5d}, Elapsed: {:s}".format(c + 1, len(ff_list), \ str(datetime.datetime.utcnow() - t1)), end="\r") sys.stdout.flush() # If running on Linux, use avconv if platform.system() == 'Linux': # If avconv is not found, try using ffmpeg. In case of using ffmpeg, # use parameter -nostdin to avoid it being stuck waiting for user input software_name = "avconv" nostdin = "" print("Checking if avconv is available...") if os.system(software_name + " --help > /dev/null"): software_name = "ffmpeg" nostdin = " -nostdin " # Construct the command for avconv mp4_path = os.path.join(dir_path, os.path.basename(dir_path) + ".mp4") temp_img_path = os.path.basename( dir_tmp_path) + os.sep + "temp_%04d.jpg" com = "cd " + dir_path + ";" \ + software_name + nostdin + " -v quiet -r "+ str(fps) +" -y -i " + temp_img_path \ + " -vcodec libx264 -pix_fmt yuv420p -crf 25 -movflags faststart -g 15 -vf \"hqdn3d=4:3:6:4.5,lutyuv=y=gammaval(0.77)\" " \ + mp4_path print("Creating timelapse using {:s}...".format(software_name)) print(com) subprocess.call([com], shell=True) # If running on Windows, use ffmpeg.exe elif platform.system() == 'Windows': # ffmpeg.exe path root = os.path.dirname(__file__) ffmpeg_path = os.path.join(root, "ffmpeg.exe") # Construct the ecommand for ffmpeg mp4_path = os.path.basename(dir_path) + ".mp4" temp_img_path = os.path.join(os.path.basename(dir_tmp_path), "temp_%04d.jpg") com = ffmpeg_path + " -v quiet -r " + str( fps ) + " -i " + temp_img_path + " -c:v libx264 -pix_fmt yuv420p -an -crf 25 -g 15 -vf \"hqdn3d=4:3:6:4.5,lutyuv=y=gammaval(0.77)\" -movflags faststart -y " + mp4_path print("Creating timelapse using ffmpeg...") print(com) subprocess.call(com, shell=True, cwd=dir_path) else: print( "generateTimelapse only works on Linux or Windows the video could not be encoded" ) #Delete temporary directory and files inside if os.path.exists(dir_tmp_path) and not nodel: shutil.rmtree(dir_tmp_path) print("Deleted temporary directory : " + dir_tmp_path) print("Total time:", datetime.datetime.utcnow() - t1)
if __name__ == '__main__': if len(sys.argv) < 2: print('Usage: python -m Utils.MergeMaxpixels /dir/with/FF/files') sys.exit() dir_path = sys.argv[1].replace('"', '') first_img = True # List all FF files in the current dir for ff_name in os.listdir(dir_path): if validFFName(ff_name): print('Stacking: ', ff_name) # Load FF file ff = readFF(dir_path, ff_name) # Take only the detection (max - avg pixel image) img = deinterlaceBlend(ff.maxpixel) - deinterlaceBlend(ff.avepixel) if first_img: merge_img = np.copy(img) first_img = False continue # Blend images 'if lighter'
def stackFFs(dir_path, file_format, deinterlace=False, subavg=False, filter_bright=False, flat_path=None, file_list=None, mask=None): """ Stack FF files in the given folder. Arguments: dir_path: [str] Path to the directory with FF files. file_format: [str] Image format for the stack. E.g. jpg, png, bmp Keyword arguments: deinterlace: [bool] True if the image shoud be deinterlaced prior to stacking. False by default. subavg: [bool] Whether the average pixel image should be subtracted form the max pixel image. False by default. filter_bright: [bool] Whether images with bright backgrounds (after average subtraction) should be skipped. False by defualt. flat_path: [str] Path to the flat calibration file. None by default. Will only be used if subavg is False. file_list: [list] A list of file for stacking. False by default, in which case all FF files in the given directory will be used. mask: [MaskStructure] Mask to apply to the stack. None by default. Return: stack_path, merge_img: - stack_path: [str] Path of the save stack. - merge_img: [ndarray] Numpy array of the stacked image. """ # Load the flat if it was given flat = None if flat_path != '': # Try finding the default flat if flat_path is None: flat_path = dir_path flat_file = 'flat.bmp' else: flat_path, flat_file = os.path.split(flat_path) flat_full_path = os.path.join(flat_path, flat_file) if os.path.isfile(flat_full_path): # Load the flat flat = loadFlat(flat_path, flat_file) print('Loaded flat:', flat_full_path) first_img = True n_stacked = 0 total_ff_files = 0 merge_img = None # If the list of files was not given, take all files in the given folder if file_list is None: file_list = sorted(os.listdir(dir_path)) # List all FF files in the current dir for ff_name in file_list: if validFFName(ff_name): # Load FF file ff = readFF(dir_path, ff_name) # Skip the file if it is corruped if ff is None: continue total_ff_files += 1 maxpixel = ff.maxpixel avepixel = ff.avepixel # Dinterlace the images if deinterlace: maxpixel = deinterlaceBlend(maxpixel) avepixel = deinterlaceBlend(avepixel) # If the flat was given, apply it to the image, only if no subtraction is done if (flat is not None) and not subavg: maxpixel = applyFlat(maxpixel, flat) avepixel = applyFlat(avepixel, flat) # Reject the image if the median subtracted image is too bright. This usually means that there # are clouds on the image which can ruin the stack if filter_bright: img = maxpixel - avepixel # Compute surface brightness median = np.median(img) # Compute top detection pixels top_brightness = np.percentile(img, 99.9) # Reject all images where the median brightness is high # Preserve images with very bright detections if (median > 10) and (top_brightness < (2**(8*img.itemsize) - 10)): print('Skipping: ', ff_name, 'median:', median, 'top brightness:', top_brightness) continue # Subtract the average from maxpixel if subavg: img = maxpixel - avepixel else: img = maxpixel if first_img: merge_img = np.copy(img) first_img = False continue print('Stacking: ', ff_name) # Blend images 'if lighter' merge_img = blendLighten(merge_img, img) n_stacked += 1 # If the number of stacked image is less than 20% of the given images, stack without filtering if filter_bright and (n_stacked < 0.2*total_ff_files): return stackFFs(dir_path, file_format, deinterlace=deinterlace, subavg=subavg, filter_bright=False, flat_path=flat_path, file_list=file_list) # If no images were stacked, do nothing if n_stacked == 0: return None, None # Extract the name of the night directory which contains the FF files night_dir = os.path.basename(dir_path) stack_path = os.path.join(dir_path, night_dir + '_stack_{:d}_meteors.'.format(n_stacked) + file_format) print("Saving stack to:", stack_path) # Stretch the levels merge_img = adjustLevels(merge_img, np.percentile(merge_img, 0.5), 1.3, np.percentile(merge_img, 99.9)) # Apply the mask, if given if mask is not None: merge_img = MaskImage.applyMask(merge_img, mask) # Save the blended image scipy.misc.imsave(stack_path, merge_img) return stack_path, merge_img
def makeFlat(dir_path, config, nostars=False, use_images=False): """ Makes a flat field from the files in the given folder. CALSTARS file is needed to estimate the quality of every image by counting the number of detected stars. Arguments: dir_path: [str] Path to the directory which contains the FF files and a CALSTARS file. config: [config object] Keyword arguments: nostars: [bool] If True, all files will be taken regardless of if they have stars on them or not. use_images: [bool] Use image files instead of FF files. False by default. Return: [2d ndarray] Flat field image as a numpy array. If the flat generation failed, None will be returned. """ # If only images are used, then don't look for a CALSTARS file if use_images: nostars = True # Load the calstars file if it should be used if not nostars: # Find the CALSTARS file in the given folder calstars_file = None for calstars_file in os.listdir(dir_path): if ('CALSTARS' in calstars_file) and ('.txt' in calstars_file): break if calstars_file is None: print('CALSTARS file could not be found in the given directory!') return None # Load the calstars file calstars_list = CALSTARS.readCALSTARS(dir_path, calstars_file) # Convert the list to a dictionary calstars = {ff_file: star_data for ff_file, star_data in calstars_list} print('CALSTARS file: ' + calstars_file + ' loaded!') # A list of FF files which have any stars on them calstars_ff_files = [line[0] for line in calstars_list] else: calstars = {} calstars_ff_files = [] # Use image files if use_images: # Find the file type with the highest file frequency in the given folder file_extensions = [] for file_name in os.listdir(dir_path): file_ext = file_name.split('.')[-1] if file_ext.lower() in ['jpg', 'png', 'bmp']: file_extensions.append(file_ext) # Get only the most frequent file type file_freqs = np.unique(file_extensions, return_counts=True) most_freq_type = file_freqs[0][0] print('Using image type:', most_freq_type) # Take only files of that file type ff_list = [file_name for file_name in sorted(os.listdir(dir_path)) \ if file_name.lower().endswith(most_freq_type)] # Use FF files else: ff_list = [] # Get a list of FF files in the folder for file_name in os.listdir(dir_path): if validFFName(file_name) and ((file_name in calstars_ff_files) or nostars): ff_list.append(file_name) # Check that there are any FF files in the folder if not ff_list: print('No valid FF files in the selected folder!') return None ff_list_good = [] ff_times = [] # Take only those FF files with enough stars on them for ff_name in ff_list: if (ff_name in calstars) or nostars: # Disable requiring minimum number of stars if specified if not nostars: # Get the number of stars detected on the FF image ff_nstars = len(calstars[ff_name]) else: ff_nstars = 0 # Check if the number of stars on the image is over the detection threshold if (ff_nstars > config.ff_min_stars) or nostars: # Add the FF file to the list of FF files to be used to make a flat ff_list_good.append(ff_name) # If images are used, don't compute the time if use_images: ff_time = 0 else: # Calculate the time of the FF files ff_time = date2JD(*getMiddleTimeFF( ff_name, config.fps, ret_milliseconds=True)) ff_times.append(ff_time) # Check that there are enough good FF files in the folder if (len(ff_times) < config.flat_min_imgs) and (not nostars): print('Not enough FF files have enough stars on them!') return None # Make sure the files cover at least 2 hours if (not (max(ff_times) - min(ff_times)) * 24 > 2) and (not nostars): print('Good FF files cover less than 2 hours!') return None # Sample FF files if there are more than 200 max_ff_flat = 200 if len(ff_list_good) > max_ff_flat: ff_list_good = sorted(random.sample(ff_list_good, max_ff_flat)) print('Using {:d} files for flat...'.format(len(ff_list_good))) c = 0 img_list = [] median_list = [] # Median combine all good FF files for i in range(len(ff_list_good)): # Load 10 files at the time and median combine them, which conserves memory if c < 10: # Use images if use_images: img = loadImage(os.path.join(dir_path, ff_list_good[i]), -1) # Use FF files else: ff = readFF(dir_path, ff_list_good[i]) # Skip the file if it is corruped if ff is None: continue img = ff.avepixel img_list.append(img) c += 1 else: img_list = np.array(img_list) # Median combine the loaded 10 (or less) images ff_median = np.median(img_list, axis=0) median_list.append(ff_median) img_list = [] c = 0 # If there are more than 1 calculated median image, combine them if len(median_list) > 1: # Median combine all median images median_list = np.array(median_list) ff_median = np.median(median_list, axis=0) else: if len(median_list) > 0: ff_median = median_list[0] else: ff_median = np.median(np.array(img_list), axis=0) # Stretch flat to 0-255 ff_median = ff_median / np.max(ff_median) * 255 # Convert the flat to 8 bits ff_median = ff_median.astype(np.uint8) return ff_median
def detectStarsAndMeteorsDirectory(dir_path, config): """ Extract stars and detect meteors on all FF files in the given folder. Arguments: dir_path: [str] Path to the directory with FF files. config: [Config obj] Return: calstars_name: [str] Name of the CALSTARS file. ftpdetectinfo_name: [str] Name of the FTPdetectinfo file. ff_detected: [list] A list of FF files with detections. """ # Get paths to every FF bin file in a directory ff_dir = dir_path ff_dir = os.path.abspath(ff_dir) ff_list = [ff_name for ff_name in sorted(os.listdir(ff_dir)) if validFFName(ff_name)] # Check if there are any file in the directory if not len(ff_list): print("No files for processing found!") return None, None, None, None print('Starting detection...') # Initialize the detector detector = QueuedPool(detectStarsAndMeteors, cores=-1, log=log, backup_dir=ff_dir) # Start the detection detector.startPool() # Give detector jobs for ff_name in ff_list: while True: # Add a job as long as there are available workers to receive it if detector.available_workers.value() > 0: print('Adding for detection:', ff_name) detector.addJob([ff_dir, ff_name, config], wait_time=0) break else: time.sleep(0.1) log.info('Waiting for the detection to finish...') # Wait for the detector to finish and close it detector.closePool() log.info('Detection finished!') log.info('Collecting results...') # Get the detection results from the queue detection_results = detector.getResults() # Save detection to disk calstars_name, ftpdetectinfo_name, ff_detected = saveDetections(detection_results, ff_dir, config) return calstars_name, ftpdetectinfo_name, ff_detected, detector
def selectFiles(config, dir_path, ff_detected): """ Make a list of all files which should be zipped in the given night directory. In the list are included: - all TXT files - all FR bin files and their parent FF bin files - all FF bin files with detections Arguments: config: [conf object] Configuration. dir_path: [str] Path to the night directory. ff_detected: [list] A list of FF bin file with detections on them. Return: selected_files: [list] A list of files selected for compression. """ ### Decide what to upload, given the upload mode ### upload_ffs = True upload_frs = True if config.upload_mode == 2: upload_ffs = False elif config.upload_mode == 3: upload_ffs = False upload_frs = False elif config.upload_mode == 4: upload_frs = False ### ### selected_list = [] # Go through all files in the night directory for file_name in os.listdir(dir_path): # Take all .txt and .csv files if (file_name.lower().endswith('.txt')) or ( file_name.lower().endswith('.csv')): selected_list.append(file_name) # Take all PNG, JPG, BMP images if ('.png' in file_name) or ('.jpg' in file_name) or ('.bmp' in file_name): selected_list.append(file_name) # Take all field sum files if ('FS' in file_name) and ('fieldsum' in file_name): selected_list.append(file_name) # Take all FR bin files, and their parent FF bin files if upload_frs and ('FR' in file_name) and ('.bin' in file_name): fr_split = file_name.split('_') # FR file identifier which it shares with the FF bin file fr_id = '_'.join(fr_split[1:3]) ff_match = None # Locate the parent FF bin file for ff_file_name in os.listdir(dir_path): if validFFName(ff_file_name) and (fr_id in ff_file_name): ff_match = ff_file_name break # Add the FR bin file and it's parent FF file to the list selected_list.append(file_name) if ff_match is not None: selected_list.append(ff_match) # Add FF file which contain detections to the list if upload_ffs and (ff_detected is not None) and (file_name in ff_detected): selected_list.append(file_name) # Take only the unique elements in the list, sorted by name selected_list = sorted(list(set(selected_list))) return selected_list
def processNight(night_data_dir, config, detection_results=None, nodetect=False): """ Given the directory with FF files, run detection and archiving. Arguments: night_data_dir: [str] Path to the directory with FF files. config: [Config obj] Keyword arguments: detection_results: [list] An optional list of detection. If None (default), detection will be done on the the files in the folder. nodetect: [bool] True if detection should be skipped. False by default. Return: night_archive_dir: [str] Path to the night directory in ArchivedFiles. archive_name: [str] Path to the archive. detector: [QueuedPool instance] Handle to the detector. """ # Remove final slash in the night dir if night_data_dir.endswith(os.sep): night_data_dir = night_data_dir[:-1] # Extract the name of the night night_data_dir_name = os.path.basename(os.path.abspath(night_data_dir)) platepar = None kml_files = [] recalibrated_platepars = None # If the detection should be run if (not nodetect): # If no detection was performed, run it if detection_results is None: # Run detection on the given directory calstars_name, ftpdetectinfo_name, ff_detected, \ detector = detectStarsAndMeteorsDirectory(night_data_dir, config) # Otherwise, save detection results else: # Save CALSTARS and FTPdetectinfo to disk calstars_name, ftpdetectinfo_name, ff_detected = saveDetections(detection_results, \ night_data_dir, config) # If the files were previously detected, there is no detector detector = None # Get the platepar file platepar, platepar_path, platepar_fmt = getPlatepar(config, night_data_dir) # Run calibration check and auto astrometry refinement if (platepar is not None) and (calstars_name is not None): # Read in the CALSTARS file calstars_list = CALSTARS.readCALSTARS(night_data_dir, calstars_name) # Run astrometry check and refinement platepar, fit_status = autoCheckFit(config, platepar, calstars_list) # If the fit was sucessful, apply the astrometry to detected meteors if fit_status: log.info('Astrometric calibration SUCCESSFUL!') # Save the refined platepar to the night directory and as default platepar.write(os.path.join(night_data_dir, config.platepar_name), fmt=platepar_fmt) platepar.write(platepar_path, fmt=platepar_fmt) else: log.info('Astrometric calibration FAILED!, Using old platepar for calibration...') # # Calculate astrometry for meteor detections # applyAstrometryFTPdetectinfo(night_data_dir, ftpdetectinfo_name, platepar_path) # If a flat is used, disable vignetting correction if config.use_flat: platepar.vignetting_coeff = 0.0 log.info("Recalibrating astrometry on FF files with detections...") # Recalibrate astrometry on every FF file and apply the calibration to detections recalibrated_platepars = recalibrateIndividualFFsAndApplyAstrometry(night_data_dir, \ os.path.join(night_data_dir, ftpdetectinfo_name), calstars_list, config, platepar) log.info("Converting RMS format to UFOOrbit format...") # Convert the FTPdetectinfo into UFOOrbit input file FTPdetectinfo2UFOOrbitInput(night_data_dir, ftpdetectinfo_name, platepar_path) # Generate a calibration report log.info("Generating a calibration report...") try: generateCalibrationReport(config, night_data_dir, platepar=platepar) except Exception as e: log.debug('Generating calibration report failed with the message:\n' + repr(e)) log.debug(repr(traceback.format_exception(*sys.exc_info()))) # Perform single station shower association log.info("Performing single station shower association...") try: showerAssociation(config, [os.path.join(night_data_dir, ftpdetectinfo_name)], \ save_plot=True, plot_activity=True) except Exception as e: log.debug('Shower association failed with the message:\n' + repr(e)) log.debug(repr(traceback.format_exception(*sys.exc_info()))) # Generate the FOV KML file log.info("Generating a FOV KML file...") try: mask_path = None mask = None # Try loading the mask if os.path.exists(os.path.join(night_data_dir, config.mask_file)): mask_path = os.path.join(night_data_dir, config.mask_file) # Try loading the default mask elif os.path.exists(config.mask_file): mask_path = os.path.abspath(config.mask_file) # Load the mask if given if mask_path: mask = loadMask(mask_path) if mask is not None: log.info("Loaded mask: {:s}".format(mask_path)) # Generate the KML (only the FOV is shown, without the station) - 100 km kml_file100 = fovKML(config, night_data_dir, platepar, mask=mask, plot_station=False, \ area_ht=100000) kml_files.append(kml_file100) # Generate the KML (only the FOV is shown, without the station) - 70 km kml_file70 = fovKML(config, night_data_dir, platepar, mask=mask, plot_station=False, \ area_ht=70000) kml_files.append(kml_file70) # Generate the KML (only the FOV is shown, without the station) - 25 km kml_file25 = fovKML(config, night_data_dir, platepar, mask=mask, plot_station=False, \ area_ht=25000) kml_files.append(kml_file25) except Exception as e: log.debug("Generating a FOV KML file failed with the message:\n" + repr(e)) log.debug(repr(traceback.format_exception(*sys.exc_info()))) else: ff_detected = [] detector = None log.info('Plotting field sums...') # Plot field sums try: plotFieldsums(night_data_dir, config) except Exception as e: log.debug('Plotting field sums failed with message:\n' + repr(e)) log.debug(repr(traceback.format_exception(*sys.exc_info()))) # Archive all fieldsums to one archive archiveFieldsums(night_data_dir) # List for any extra files which will be copied to the night archive directory. Full paths have to be # given extra_files = [] log.info('Making a flat...') # Make a new flat field image try: flat_img = makeFlat(night_data_dir, config) except Exception as e: log.debug('Making a flat failed with message:\n' + repr(e)) log.debug(repr(traceback.format_exception(*sys.exc_info()))) flat_img = None # If making flat was sucessfull, save it if flat_img is not None: # Save the flat in the night directory, to keep the operational flat updated flat_path = os.path.join(night_data_dir, os.path.basename(config.flat_file)) saveImage(flat_path, flat_img) log.info('Flat saved to: ' + flat_path) # Copy the flat to the night's directory as well extra_files.append(flat_path) else: log.info('Making flat image FAILED!') ### Add extra files to archive # Add the config file to the archive too extra_files.append(config.config_file_name) # Add the mask if (not nodetect): if os.path.exists(config.mask_file): mask_path = os.path.abspath(config.mask_file) extra_files.append(mask_path) # Add the platepar to the archive if it exists if (not nodetect): if os.path.exists(platepar_path): extra_files.append(platepar_path) # Add the json file with recalibrated platepars to the archive if (not nodetect): recalibrated_platepars_path = os.path.join(night_data_dir, config.platepars_recalibrated_name) if os.path.exists(recalibrated_platepars_path): extra_files.append(recalibrated_platepars_path) # Add the FOV KML files if len(kml_files): extra_files += kml_files # If FFs are not uploaded, choose two to upload if config.upload_mode > 1: # If all FF files are not uploaded, add two FF files which were successfuly recalibrated recalibrated_ffs = [] for ff_name in recalibrated_platepars: pp = recalibrated_platepars[ff_name] # Check if the FF was recalibrated if pp.auto_recalibrated: recalibrated_ffs.append(os.path.join(night_data_dir, ff_name)) # Choose two files randomly if len(recalibrated_ffs) > 2: extra_files += random.sample(recalibrated_ffs, 2) elif len(recalibrated_ffs) > 0: extra_files += recalibrated_ffs # If no were recalibrated else: # Create a list of all FF files ff_list = [os.path.join(night_data_dir, ff_name) for ff_name in os.listdir(night_data_dir) \ if validFFName(ff_name)] # Add any two FF files extra_files += random.sample(ff_list, 2) ### ### # If the detection should be run if (not nodetect): # Make a CAL file and a special CAMS FTPdetectinfo if full CAMS compatibility is desired if (config.cams_code > 0) and (platepar is not None): log.info('Generating a CAMS FTPdetectinfo file...') # Write the CAL file to disk cal_file_name = writeCAL(night_data_dir, config, platepar) # Check if the CAL file was successfully generated if cal_file_name is not None: cams_code_formatted = "{:06d}".format(int(config.cams_code)) # Load the FTPdetectinfo _, fps, meteor_list = readFTPdetectinfo(night_data_dir, ftpdetectinfo_name, \ ret_input_format=True) # Replace the camera code with the CAMS code for met in meteor_list: # Replace the station name and the FF file format ff_name = met[0] ff_name = ff_name.replace('.fits', '.bin') ff_name = ff_name.replace(config.stationID, cams_code_formatted) met[0] = ff_name # Write the CAMS compatible FTPdetectinfo file writeFTPdetectinfo(meteor_list, night_data_dir, \ ftpdetectinfo_name.replace(config.stationID, cams_code_formatted),\ night_data_dir, cams_code_formatted, fps, calibration=cal_file_name, \ celestial_coords_given=(platepar is not None)) night_archive_dir = os.path.join(os.path.abspath(config.data_dir), config.archived_dir, night_data_dir_name) log.info('Archiving detections to ' + night_archive_dir) # Archive the detections archive_name = archiveDetections(night_data_dir, night_archive_dir, ff_detected, config, \ extra_files=extra_files) return night_archive_dir, archive_name, detector
def generateCalibrationReport(config, night_dir_path, match_radius=2.0, platepar=None, show_graphs=False): """ Given the folder of the night, find the Calstars file, check the star fit and generate a report with the quality of the calibration. The report contains information about both the astrometry and the photometry calibration. Graphs will be saved in the given directory of the night. Arguments: config: [Config instance] night_dir_path: [str] Full path to the directory of the night. Keyword arguments: match_radius: [float] Match radius for star matching between image and catalog stars (px). platepar: [Platepar instance] Use this platepar instead of finding one in the folder. show_graphs: [bool] Show the graphs on the screen. False by default. Return: None """ # Find the CALSTARS file in the given folder calstars_file = None for calstars_file in os.listdir(night_dir_path): if ('CALSTARS' in calstars_file) and ('.txt' in calstars_file): break if calstars_file is None: print('CALSTARS file could not be found in the given directory!') return None # Load the calstars file star_list = readCALSTARS(night_dir_path, calstars_file) ### Load recalibrated platepars, if they exist ### # Find recalibrated platepars file per FF file platepars_recalibrated_file = None for file_name in os.listdir(night_dir_path): if file_name == config.platepars_recalibrated_name: platepars_recalibrated_file = file_name break # Load all recalibrated platepars if the file is available recalibrated_platepars = None if platepars_recalibrated_file: with open(os.path.join(night_dir_path, platepars_recalibrated_file)) as f: recalibrated_platepars = json.load(f) print('Loaded recalibrated platepars JSON file for the calibration report...') ### ### ### Load the platepar file ### # Find the platepar file in the given directory if it was not given if platepar is None: # Find the platepar file platepar_file = None for file_name in os.listdir(night_dir_path): if file_name == config.platepar_name: platepar_file = file_name break if platepar_file is None: print('The platepar cannot be found in the night directory!') return None # Load the platepar file platepar = Platepar() platepar.read(os.path.join(night_dir_path, platepar_file)) ### ### night_name = os.path.split(night_dir_path.strip(os.sep))[1] # Go one mag deeper than in the config lim_mag = config.catalog_mag_limit + 1 # Load catalog stars (load one magnitude deeper) catalog_stars, mag_band_str, config.star_catalog_band_ratios = StarCatalog.readStarCatalog(\ config.star_catalog_path, config.star_catalog_file, lim_mag=lim_mag, \ mag_band_ratios=config.star_catalog_band_ratios) ### Take only those CALSTARS entires for which FF files exist in the folder ### # Get a list of FF files in the folder\ ff_list = [] for file_name in os.listdir(night_dir_path): if validFFName(file_name): ff_list.append(file_name) # Filter out calstars entries, generate a star dictionary where the keys are JDs of FFs star_dict = {} ff_dict = {} for entry in star_list: ff_name, star_data = entry # Check if the FF from CALSTARS exists in the folder if ff_name not in ff_list: continue dt = getMiddleTimeFF(ff_name, config.fps, ret_milliseconds=True) jd = date2JD(*dt) # Add the time and the stars to the dict star_dict[jd] = star_data ff_dict[jd] = ff_name ### ### # If there are no FF files in the directory, don't generate a report if len(star_dict) == 0: print('No FF files from the CALSTARS file in the directory!') return None # If the recalibrated platepars file exists, take the one with the most stars max_jd = 0 if recalibrated_platepars is not None: max_stars = 0 for ff_name_temp in recalibrated_platepars: # Compute the Julian date of the FF middle dt = getMiddleTimeFF(ff_name_temp, config.fps, ret_milliseconds=True) jd = date2JD(*dt) # Check that this file exists in CALSTARS and the list of FF files if (jd not in star_dict) or (jd not in ff_dict): continue # Check if the number of stars on this FF file is larger than the before if len(star_dict[jd]) > max_stars: max_jd = jd max_stars = len(star_dict[jd]) # Set a flag to indicate if using recalibrated platepars has failed if max_jd == 0: using_recalib_platepars = False else: print('Using recalibrated platepars, file:', ff_dict[max_jd]) using_recalib_platepars = True # Select the platepar where the FF file has the most stars platepar_dict = recalibrated_platepars[ff_dict[max_jd]] platepar = Platepar() platepar.loadFromDict(platepar_dict) filtered_star_dict = {max_jd: star_dict[max_jd]} # Match stars on the image with the stars in the catalog n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \ filtered_star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag) max_matched_stars = n_matched # Otherwise take the optimal FF file for evaluation if (recalibrated_platepars is None) or (not using_recalib_platepars): # If there are more than a set number of FF files to evaluate, choose only the ones with most stars on # the image if len(star_dict) > config.calstars_files_N: # Find JDs of FF files with most stars on them top_nstars_indices = np.argsort([len(x) for x in star_dict.values()])[::-1][:config.calstars_files_N \ - 1] filtered_star_dict = {} for i in top_nstars_indices: filtered_star_dict[list(star_dict.keys())[i]] = list(star_dict.values())[i] star_dict = filtered_star_dict # Match stars on the image with the stars in the catalog n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \ star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag) # If no recalibrated platepars where found, find the image with the largest number of matched stars if (not using_recalib_platepars) or (max_jd == 0): max_jd = 0 max_matched_stars = 0 for jd in matched_stars: _, _, distances = matched_stars[jd] if len(distances) > max_matched_stars: max_jd = jd max_matched_stars = len(distances) # If there are no matched stars, use the image with the largest number of detected stars if max_matched_stars <= 2: max_jd = max(star_dict, key=lambda x: len(star_dict[x])) distances = [np.inf] # Take the FF file with the largest number of matched stars ff_name = ff_dict[max_jd] # Load the FF file ff = readFF(night_dir_path, ff_name) img_h, img_w = ff.avepixel.shape dpi = 200 plt.figure(figsize=(ff.avepixel.shape[1]/dpi, ff.avepixel.shape[0]/dpi), dpi=dpi) # Take the average pixel img = ff.avepixel # Slightly adjust the levels img = Image.adjustLevels(img, np.percentile(img, 1.0), 1.2, np.percentile(img, 99.99)) plt.imshow(img, cmap='gray', interpolation='nearest') legend_handles = [] # Plot detected stars for img_star in star_dict[max_jd]: y, x, _, _ = img_star rect_side = 5*match_radius square_patch = plt.Rectangle((x - rect_side/2, y - rect_side/2), rect_side, rect_side, color='g', \ fill=False, label='Image stars') plt.gca().add_artist(square_patch) legend_handles.append(square_patch) # If there are matched stars, plot them if max_matched_stars > 2: # Take the solution with the largest number of matched stars image_stars, matched_catalog_stars, distances = matched_stars[max_jd] # Plot matched stars for img_star in image_stars: x, y, _, _ = img_star circle_patch = plt.Circle((y, x), radius=3*match_radius, color='y', fill=False, \ label='Matched stars') plt.gca().add_artist(circle_patch) legend_handles.append(circle_patch) ### Plot match residuals ### # Compute preducted positions of matched image stars from the catalog x_predicted, y_predicted = raDecToXYPP(matched_catalog_stars[:, 0], \ matched_catalog_stars[:, 1], max_jd, platepar) img_y, img_x, _, _ = image_stars.T delta_x = x_predicted - img_x delta_y = y_predicted - img_y # Compute image residual and angle of the error res_angle = np.arctan2(delta_y, delta_x) res_distance = np.sqrt(delta_x**2 + delta_y**2) # Calculate coordinates of the beginning of the residual line res_x_beg = img_x + 3*match_radius*np.cos(res_angle) res_y_beg = img_y + 3*match_radius*np.sin(res_angle) # Calculate coordinates of the end of the residual line res_x_end = img_x + 100*np.cos(res_angle)*res_distance res_y_end = img_y + 100*np.sin(res_angle)*res_distance # Plot the 100x residuals for i in range(len(x_predicted)): res_plot = plt.plot([res_x_beg[i], res_x_end[i]], [res_y_beg[i], res_y_end[i]], color='orange', \ lw=0.5, label='100x residuals') legend_handles.append(res_plot[0]) ### ### else: distances = [np.inf] # If there are no matched stars, plot large text in the middle of the screen plt.text(img_w/2, img_h/2, "NO MATCHED STARS!", color='r', alpha=0.5, fontsize=20, ha='center', va='center') ### Plot positions of catalog stars to the limiting magnitude of the faintest matched star + 1 mag ### # Find the faintest magnitude among matched stars if max_matched_stars > 2: faintest_mag = np.max(matched_catalog_stars[:, 2]) + 1 else: # If there are no matched stars, use the limiting magnitude from config faintest_mag = config.catalog_mag_limit + 1 # Estimate RA,dec of the centre of the FOV _, RA_c, dec_c, _ = xyToRaDecPP([jd2Date(max_jd)], [platepar.X_res/2], [platepar.Y_res/2], [1], platepar) RA_c = RA_c[0] dec_c = dec_c[0] fov_radius = np.hypot(*computeFOVSize(platepar)) # Get stars from the catalog around the defined center in a given radius _, extracted_catalog = subsetCatalog(catalog_stars, RA_c, dec_c, fov_radius, faintest_mag) ra_catalog, dec_catalog, mag_catalog = extracted_catalog.T # Compute image positions of all catalog stars that should be on the image x_catalog, y_catalog = raDecToXYPP(ra_catalog, dec_catalog, max_jd, platepar) # Filter all catalog stars outside the image temp_arr = np.c_[x_catalog, y_catalog, mag_catalog] temp_arr = temp_arr[temp_arr[:, 0] >= 0] temp_arr = temp_arr[temp_arr[:, 0] <= ff.avepixel.shape[1]] temp_arr = temp_arr[temp_arr[:, 1] >= 0] temp_arr = temp_arr[temp_arr[:, 1] <= ff.avepixel.shape[0]] x_catalog, y_catalog, mag_catalog = temp_arr.T # Plot catalog stars on the image cat_stars_handle = plt.scatter(x_catalog, y_catalog, c='none', marker='D', lw=1.0, alpha=0.4, \ s=((4.0 + (faintest_mag - mag_catalog))/3.0)**(2*2.512), edgecolor='r', label='Catalog stars') legend_handles.append(cat_stars_handle) ### ### # Add info text info_text = ff_dict[max_jd] + '\n' \ + "Matched stars: {:d}/{:d}\n".format(max_matched_stars, len(star_dict[max_jd])) \ + "Median distance: {:.2f} px\n".format(np.median(distances)) \ + "Catalog limiting magnitude: {:.1f}".format(lim_mag) plt.text(10, 10, info_text, bbox=dict(facecolor='black', alpha=0.5), va='top', ha='left', fontsize=4, \ color='w') legend = plt.legend(handles=legend_handles, prop={'size': 4}, loc='upper right') legend.get_frame().set_facecolor('k') legend.get_frame().set_edgecolor('k') for txt in legend.get_texts(): txt.set_color('w') plt.axis('off') plt.gca().get_xaxis().set_visible(False) plt.gca().get_yaxis().set_visible(False) plt.xlim([0, ff.avepixel.shape[1]]) plt.ylim([ff.avepixel.shape[0], 0]) # Remove the margins plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0) plt.savefig(os.path.join(night_dir_path, night_name + '_calib_report_astrometry.jpg'), \ bbox_inches='tight', pad_inches=0, dpi=dpi) if show_graphs: plt.show() else: plt.clf() plt.close() if max_matched_stars > 2: ### Plot the photometry ### plt.figure(dpi=dpi) # Take only those stars which are inside the 3/4 of the shorter image axis from the center photom_selection_radius = np.min([img_h, img_w])/3 filter_indices = ((image_stars[:, 0] - img_h/2)**2 + (image_stars[:, 1] \ - img_w/2)**2) <= photom_selection_radius**2 star_intensities = image_stars[filter_indices, 2] catalog_mags = matched_catalog_stars[filter_indices, 2] # Plot intensities of image stars #star_intensities = image_stars[:, 2] plt.scatter(-2.5*np.log10(star_intensities), catalog_mags, s=5, c='r') # Fit the photometry on automated star intensities photom_offset, fit_stddev, _ = photometryFit(np.log10(star_intensities), catalog_mags) # Plot photometric offset from the platepar x_min, x_max = plt.gca().get_xlim() y_min, y_max = plt.gca().get_ylim() x_min_w = x_min - 3 x_max_w = x_max + 3 y_min_w = y_min - 3 y_max_w = y_max + 3 photometry_info = 'Platepar: {:+.2f}LSP {:+.2f} +/- {:.2f} \nGamma = {:.2f}'.format(platepar.mag_0, \ platepar.mag_lev, platepar.mag_lev_stddev, platepar.gamma) # Plot the photometry calibration from the platepar logsum_arr = np.linspace(x_min_w, x_max_w, 10) plt.plot(logsum_arr, logsum_arr + platepar.mag_lev, label=photometry_info, linestyle='--', \ color='k', alpha=0.5) # Plot the fitted photometry calibration fit_info = "Fit: {:+.2f}LSP {:+.2f} +/- {:.2f}".format(-2.5, photom_offset, fit_stddev) plt.plot(logsum_arr, logsum_arr + photom_offset, label=fit_info, linestyle='--', color='red', alpha=0.5) plt.legend() plt.ylabel("Catalog magnitude ({:s})".format(mag_band_str)) plt.xlabel("Uncalibrated magnitude") # Set wider axis limits plt.xlim(x_min_w, x_max_w) plt.ylim(y_min_w, y_max_w) plt.gca().invert_yaxis() plt.gca().invert_xaxis() plt.grid() plt.savefig(os.path.join(night_dir_path, night_name + '_calib_report_photometry.png'), dpi=150) if show_graphs: plt.show() else: plt.clf() plt.close()
print('FireballDetection') else: print('MeteorDetection') # Load the config file config = cr.loadConfigFromDirectory(cml_args.config, cml_args.dir_path) if not os.path.exists(cml_args.dir_path): print('{:s} directory does not exist!'.format(cml_args.dir_path)) # Load all FF files in the given directory for file_name in os.listdir(cml_args.dir_path): # Check if the file is an FF file if validFFName(file_name): # Read the FF file ff = readFF(cml_args.dir_path, file_name) # Skip the file if it is corruped if ff is None: continue # Use the fireball thresholding if cml_args.fireball: k1 = config.k1 j1 = config.j1 # Meteor detection else:
def selectFiles(dir_path, ff_detected): """ Make a list of all files which should be zipped in the given night directory. In the list are included: - all TXT files - all FR bin files and their parent FF bin files - all FF bin files with detections Arguments: dir_path: [str] Path to the night directory. ff_detected: [list] A list of FF bin file with detections on them. Return: selected_files: [list] A list of files selected for compression. """ selected_list = [] # Go through all files in the night directory for file_name in os.listdir(dir_path): # Take all .txt and .csv files if (file_name.lower().endswith('.txt')) or (file_name.lower().endswith('.csv')): selected_list.append(file_name) # Take all PNG, JPG, BMP images if ('.png' in file_name) or ('.jpg' in file_name) or ('.bmp' in file_name): selected_list.append(file_name) # Take all field sum files if ('FS' in file_name) and ('fieldsum' in file_name): selected_list.append(file_name) # Take all FR bin files, and their parent FF bin files if ('FR' in file_name) and ('.bin' in file_name): fr_split = file_name.split('_') # FR file identifier which it shares with the FF bin file fr_id = '_'.join(fr_split[1:3]) ff_match = None # Locate the parent FF bin file for ff_file_name in os.listdir(dir_path): if validFFName(ff_file_name) and (fr_id in ff_file_name): ff_match = ff_file_name break # Add the FR bin file and it's parent FF file to the list selected_list.append(file_name) if ff_match is not None: selected_list.append(ff_match) # Add FF file which contain detections to the list if file_name in ff_detected: selected_list.append(file_name) # Take only the unique elements in the list, sorted by name selected_list = sorted(list(set(selected_list))) return selected_list
def selectFiles(dir_path, ff_detected): """ Make a list of all files which should be zipped in the given night directory. In the list are included: - all TXT files - all FR bin files and their parent FF bin files - all FF bin files with detections Arguments: dir_path: [str] Path to the night directory. ff_detected: [list] A list of FF bin file with detections on them. Return: selected_files: [list] A list of files selected for compression. """ selected_list = [] # Go through all files in the night directory for file_name in os.listdir(dir_path): # Take all .txt files if '.txt' in file_name: selected_list.append(file_name) # Take all PNG, JPG, BMP images if ('.png' in file_name) or ('.jpg' in file_name) or ('.bmp' in file_name): selected_list.append(file_name) # Take all field sum files if ('FS' in file_name) and ('fieldsum' in file_name): selected_list.append(file_name) # Take all FR bin files, and their parent FF bin files if ('FR' in file_name) and ('.bin' in file_name): fr_split = file_name.split('_') # FR file identifier which it shares with the FF bin file fr_id = '_'.join(fr_split[1:3]) ff_match = None # Locate the parent FF bin file for ff_file_name in os.listdir(dir_path): if validFFName(ff_file_name) and (fr_id in ff_file_name): ff_match = ff_file_name break # Add the FR bin file and it's parent FF file to the list selected_list.append(file_name) if ff_match is not None: selected_list.append(ff_match) # Add FF file which contain detections to the list if file_name in ff_detected: selected_list.append(file_name) # Take only the unique elements in the list, sorted by name selected_list = sorted(list(set(selected_list))) return selected_list
def stackFFs(dir_path, file_format, deinterlace=False, subavg=False, filter_bright=False, flat_path=None, file_list=None, mask=None): """ Stack FF files in the given folder. Arguments: dir_path: [str] Path to the directory with FF files. file_format: [str] Image format for the stack. E.g. jpg, png, bmp Keyword arguments: deinterlace: [bool] True if the image shoud be deinterlaced prior to stacking. False by default. subavg: [bool] Whether the average pixel image should be subtracted form the max pixel image. False by default. filter_bright: [bool] Whether images with bright backgrounds (after average subtraction) should be skipped. False by defualt. flat_path: [str] Path to the flat calibration file. None by default. Will only be used if subavg is False. file_list: [list] A list of file for stacking. False by default, in which case all FF files in the given directory will be used. mask: [MaskStructure] Mask to apply to the stack. None by default. Return: stack_path, merge_img: - stack_path: [str] Path of the save stack. - merge_img: [ndarray] Numpy array of the stacked image. """ # Load the flat if it was given flat = None if flat_path != '': # Try finding the default flat if flat_path is None: flat_path = dir_path flat_file = 'flat.bmp' else: flat_path, flat_file = os.path.split(flat_path) flat_full_path = os.path.join(flat_path, flat_file) if os.path.isfile(flat_full_path): # Load the flat flat = loadFlat(flat_path, flat_file) print('Loaded flat:', flat_full_path) first_img = True n_stacked = 0 total_ff_files = 0 merge_img = None # If the list of files was not given, take all files in the given folder if file_list is None: file_list = sorted(os.listdir(dir_path)) # List all FF files in the current dir for ff_name in file_list: if validFFName(ff_name): # Load FF file ff = readFF(dir_path, ff_name) # Skip the file if it is corruped if ff is None: continue total_ff_files += 1 maxpixel = ff.maxpixel avepixel = ff.avepixel # Dinterlace the images if deinterlace: maxpixel = deinterlaceBlend(maxpixel) avepixel = deinterlaceBlend(avepixel) # If the flat was given, apply it to the image, only if no subtraction is done if (flat is not None) and not subavg: maxpixel = applyFlat(maxpixel, flat) avepixel = applyFlat(avepixel, flat) # Reject the image if the median subtracted image is too bright. This usually means that there # are clouds on the image which can ruin the stack if filter_bright: img = maxpixel - avepixel # Compute surface brightness median = np.median(img) # Compute top detection pixels top_brightness = np.percentile(img, 99.9) # Reject all images where the median brightness is high # Preserve images with very bright detections if (median > 10) and (top_brightness < (2**(8 * img.itemsize) - 10)): print('Skipping: ', ff_name, 'median:', median, 'top brightness:', top_brightness) continue # Subtract the average from maxpixel if subavg: img = maxpixel - avepixel else: img = maxpixel if first_img: merge_img = np.copy(img) first_img = False continue print('Stacking: ', ff_name) # Blend images 'if lighter' merge_img = blendLighten(merge_img, img) n_stacked += 1 # If the number of stacked image is less than 20% of the given images, stack without filtering if filter_bright and (n_stacked < 0.2 * total_ff_files): return stackFFs(dir_path, file_format, deinterlace=deinterlace, subavg=subavg, filter_bright=False, flat_path=flat_path, file_list=file_list) # If no images were stacked, do nothing if n_stacked == 0: return None, None # Extract the name of the night directory which contains the FF files night_dir = os.path.basename(dir_path) stack_path = os.path.join( dir_path, night_dir + '_stack_{:d}_meteors.'.format(n_stacked) + file_format) print("Saving stack to:", stack_path) # Stretch the levels merge_img = adjustLevels(merge_img, np.percentile(merge_img, 0.5), 1.3, np.percentile(merge_img, 99.9)) # Apply the mask, if given if mask is not None: merge_img = MaskImage.applyMask(merge_img, mask) # Save the blended image saveImage(stack_path, merge_img) return stack_path, merge_img
if archive_dir_name.startswith(config.stationID): if os.path.isdir(os.path.join(config.data_dir, config.archived_dir, \ archive_dir_name)): archive_dir_list.append(archive_dir_name) # If there are any archived dirs, choose the last one if archive_dir_list: latest_night_archive_dir = os.path.join(config.data_dir, config.archived_dir, \ archive_dir_list[-1]) # Make sure that there are any FF files in the chosen archived dir ffs_latest_night_archive = [ff_name for ff_name \ in os.listdir(latest_night_archive_dir) if validFFName(ff_name)] if len(ffs_latest_night_archive): log.info( "Starting a slideshow of {:d} detections from the previous night." .format(len(ffs_latest_night_archive))) # Start the slide show slideshow_view = LiveViewer(latest_night_archive_dir, slideshow=True, \ banner_text="Last night's detections") slideshow_view.start() else: log.info( "No detections from the previous night to show as a slideshow!"
def generateCalibrationReport(config, night_dir_path, match_radius=2.0, platepar=None, show_graphs=False): """ Given the folder of the night, find the Calstars file, check the star fit and generate a report with the quality of the calibration. The report contains information about both the astrometry and the photometry calibration. Graphs will be saved in the given directory of the night. Arguments: config: [Config instance] night_dir_path: [str] Full path to the directory of the night. Keyword arguments: match_radius: [float] Match radius for star matching between image and catalog stars (px). platepar: [Platepar instance] Use this platepar instead of finding one in the folder. show_graphs: [bool] Show the graphs on the screen. False by default. Return: None """ # Find the CALSTARS file in the given folder calstars_file = None for calstars_file in os.listdir(night_dir_path): if ('CALSTARS' in calstars_file) and ('.txt' in calstars_file): break if calstars_file is None: print('CALSTARS file could not be found in the given directory!') return None # Load the calstars file star_list = readCALSTARS(night_dir_path, calstars_file) ### Load recalibrated platepars, if they exist ### # Find recalibrated platepars file per FF file platepars_recalibrated_file = None for file_name in os.listdir(night_dir_path): if file_name == config.platepars_recalibrated_name: platepars_recalibrated_file = file_name break # Load all recalibrated platepars if the file is available recalibrated_platepars = None if platepars_recalibrated_file: with open(os.path.join(night_dir_path, platepars_recalibrated_file)) as f: recalibrated_platepars = json.load(f) print( 'Loaded recalibrated platepars JSON file for the calibration report...' ) ### ### ### Load the platepar file ### # Find the platepar file in the given directory if it was not given if platepar is None: # Find the platepar file platepar_file = None for file_name in os.listdir(night_dir_path): if file_name == config.platepar_name: platepar_file = file_name break if platepar_file is None: print('The platepar cannot be found in the night directory!') return None # Load the platepar file platepar = Platepar() platepar.read(os.path.join(night_dir_path, platepar_file), use_flat=config.use_flat) ### ### night_name = os.path.split(night_dir_path.strip(os.sep))[1] # Go one mag deeper than in the config lim_mag = config.catalog_mag_limit + 1 # Load catalog stars (load one magnitude deeper) catalog_stars, mag_band_str, config.star_catalog_band_ratios = StarCatalog.readStarCatalog(\ config.star_catalog_path, config.star_catalog_file, lim_mag=lim_mag, \ mag_band_ratios=config.star_catalog_band_ratios) ### Take only those CALSTARS entires for which FF files exist in the folder ### # Get a list of FF files in the folder ff_list = [] for file_name in os.listdir(night_dir_path): if validFFName(file_name): ff_list.append(file_name) # Filter out calstars entries, generate a star dictionary where the keys are JDs of FFs star_dict = {} ff_dict = {} for entry in star_list: ff_name, star_data = entry # Check if the FF from CALSTARS exists in the folder if ff_name not in ff_list: continue dt = getMiddleTimeFF(ff_name, config.fps, ret_milliseconds=True) jd = date2JD(*dt) # Add the time and the stars to the dict star_dict[jd] = star_data ff_dict[jd] = ff_name ### ### # If there are no FF files in the directory, don't generate a report if len(star_dict) == 0: print('No FF files from the CALSTARS file in the directory!') return None # If the recalibrated platepars file exists, take the one with the most stars max_jd = 0 using_recalib_platepars = False if recalibrated_platepars is not None: max_stars = 0 for ff_name_temp in recalibrated_platepars: # Compute the Julian date of the FF middle dt = getMiddleTimeFF(ff_name_temp, config.fps, ret_milliseconds=True) jd = date2JD(*dt) # Check that this file exists in CALSTARS and the list of FF files if (jd not in star_dict) or (jd not in ff_dict): continue # Check if the number of stars on this FF file is larger than the before if len(star_dict[jd]) > max_stars: max_jd = jd max_stars = len(star_dict[jd]) # Set a flag to indicate if using recalibrated platepars has failed if max_jd == 0: using_recalib_platepars = False else: print('Using recalibrated platepars, file:', ff_dict[max_jd]) using_recalib_platepars = True # Select the platepar where the FF file has the most stars platepar_dict = recalibrated_platepars[ff_dict[max_jd]] platepar = Platepar() platepar.loadFromDict(platepar_dict, use_flat=config.use_flat) filtered_star_dict = {max_jd: star_dict[max_jd]} # Match stars on the image with the stars in the catalog n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \ filtered_star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag) max_matched_stars = n_matched # Otherwise take the optimal FF file for evaluation if (recalibrated_platepars is None) or (not using_recalib_platepars): # If there are more than a set number of FF files to evaluate, choose only the ones with most stars on # the image if len(star_dict) > config.calstars_files_N: # Find JDs of FF files with most stars on them top_nstars_indices = np.argsort([len(x) for x in star_dict.values()])[::-1][:config.calstars_files_N \ - 1] filtered_star_dict = {} for i in top_nstars_indices: filtered_star_dict[list(star_dict.keys())[i]] = list( star_dict.values())[i] star_dict = filtered_star_dict # Match stars on the image with the stars in the catalog n_matched, avg_dist, cost, matched_stars = matchStarsResiduals(config, platepar, catalog_stars, \ star_dict, match_radius, ret_nmatch=True, lim_mag=lim_mag) # If no recalibrated platepars where found, find the image with the largest number of matched stars if (not using_recalib_platepars) or (max_jd == 0): max_jd = 0 max_matched_stars = 0 for jd in matched_stars: _, _, distances = matched_stars[jd] if len(distances) > max_matched_stars: max_jd = jd max_matched_stars = len(distances) # If there are no matched stars, use the image with the largest number of detected stars if max_matched_stars <= 2: max_jd = max(star_dict, key=lambda x: len(star_dict[x])) distances = [np.inf] # Take the FF file with the largest number of matched stars ff_name = ff_dict[max_jd] # Load the FF file ff = readFF(night_dir_path, ff_name) img_h, img_w = ff.avepixel.shape dpi = 200 plt.figure(figsize=(ff.avepixel.shape[1] / dpi, ff.avepixel.shape[0] / dpi), dpi=dpi) # Take the average pixel img = ff.avepixel # Slightly adjust the levels img = Image.adjustLevels(img, np.percentile(img, 1.0), 1.3, np.percentile(img, 99.99)) plt.imshow(img, cmap='gray', interpolation='nearest') legend_handles = [] # Plot detected stars for img_star in star_dict[max_jd]: y, x, _, _ = img_star rect_side = 5 * match_radius square_patch = plt.Rectangle((x - rect_side/2, y - rect_side/2), rect_side, rect_side, color='g', \ fill=False, label='Image stars') plt.gca().add_artist(square_patch) legend_handles.append(square_patch) # If there are matched stars, plot them if max_matched_stars > 2: # Take the solution with the largest number of matched stars image_stars, matched_catalog_stars, distances = matched_stars[max_jd] # Plot matched stars for img_star in image_stars: x, y, _, _ = img_star circle_patch = plt.Circle((y, x), radius=3*match_radius, color='y', fill=False, \ label='Matched stars') plt.gca().add_artist(circle_patch) legend_handles.append(circle_patch) ### Plot match residuals ### # Compute preducted positions of matched image stars from the catalog x_predicted, y_predicted = raDecToXYPP(matched_catalog_stars[:, 0], \ matched_catalog_stars[:, 1], max_jd, platepar) img_y, img_x, _, _ = image_stars.T delta_x = x_predicted - img_x delta_y = y_predicted - img_y # Compute image residual and angle of the error res_angle = np.arctan2(delta_y, delta_x) res_distance = np.sqrt(delta_x**2 + delta_y**2) # Calculate coordinates of the beginning of the residual line res_x_beg = img_x + 3 * match_radius * np.cos(res_angle) res_y_beg = img_y + 3 * match_radius * np.sin(res_angle) # Calculate coordinates of the end of the residual line res_x_end = img_x + 100 * np.cos(res_angle) * res_distance res_y_end = img_y + 100 * np.sin(res_angle) * res_distance # Plot the 100x residuals for i in range(len(x_predicted)): res_plot = plt.plot([res_x_beg[i], res_x_end[i]], [res_y_beg[i], res_y_end[i]], color='orange', \ lw=0.5, label='100x residuals') legend_handles.append(res_plot[0]) ### ### else: distances = [np.inf] # If there are no matched stars, plot large text in the middle of the screen plt.text(img_w / 2, img_h / 2, "NO MATCHED STARS!", color='r', alpha=0.5, fontsize=20, ha='center', va='center') ### Plot positions of catalog stars to the limiting magnitude of the faintest matched star + 1 mag ### # Find the faintest magnitude among matched stars if max_matched_stars > 2: faintest_mag = np.max(matched_catalog_stars[:, 2]) + 1 else: # If there are no matched stars, use the limiting magnitude from config faintest_mag = config.catalog_mag_limit + 1 # Estimate RA,dec of the centre of the FOV _, RA_c, dec_c, _ = xyToRaDecPP([jd2Date(max_jd)], [platepar.X_res / 2], [platepar.Y_res / 2], [1], platepar) RA_c = RA_c[0] dec_c = dec_c[0] fov_radius = np.hypot(*computeFOVSize(platepar)) # Get stars from the catalog around the defined center in a given radius _, extracted_catalog = subsetCatalog(catalog_stars, RA_c, dec_c, fov_radius, faintest_mag) ra_catalog, dec_catalog, mag_catalog = extracted_catalog.T # Compute image positions of all catalog stars that should be on the image x_catalog, y_catalog = raDecToXYPP(ra_catalog, dec_catalog, max_jd, platepar) # Filter all catalog stars outside the image temp_arr = np.c_[x_catalog, y_catalog, mag_catalog] temp_arr = temp_arr[temp_arr[:, 0] >= 0] temp_arr = temp_arr[temp_arr[:, 0] <= ff.avepixel.shape[1]] temp_arr = temp_arr[temp_arr[:, 1] >= 0] temp_arr = temp_arr[temp_arr[:, 1] <= ff.avepixel.shape[0]] x_catalog, y_catalog, mag_catalog = temp_arr.T # Plot catalog stars on the image cat_stars_handle = plt.scatter(x_catalog, y_catalog, c='none', marker='D', lw=1.0, alpha=0.4, \ s=((4.0 + (faintest_mag - mag_catalog))/3.0)**(2*2.512), edgecolor='r', label='Catalog stars') legend_handles.append(cat_stars_handle) ### ### # Add info text in the corner info_text = ff_dict[max_jd] + '\n' \ + "Matched stars within {:.1f} px radius: {:d}/{:d} \n".format(match_radius, max_matched_stars, \ len(star_dict[max_jd])) \ + "Median distance = {:.2f} px\n".format(np.median(distances)) \ + "Catalog lim mag = {:.1f}".format(lim_mag) plt.text(10, 10, info_text, bbox=dict(facecolor='black', alpha=0.5), va='top', ha='left', fontsize=4, \ color='w', family='monospace') legend = plt.legend(handles=legend_handles, prop={'size': 4}, loc='upper right') legend.get_frame().set_facecolor('k') legend.get_frame().set_edgecolor('k') for txt in legend.get_texts(): txt.set_color('w') ### Add FOV info (centre, size) ### # Mark FOV centre plt.scatter(platepar.X_res / 2, platepar.Y_res / 2, marker='+', s=20, c='r', zorder=4) # Compute FOV centre alt/az azim_centre, alt_centre = raDec2AltAz(max_jd, platepar.lon, platepar.lat, RA_c, dec_c) # Compute FOV size fov_h, fov_v = computeFOVSize(platepar) # Compute the rotation wrt. horizon rot_horizon = rotationWrtHorizon(platepar) fov_centre_text = "Azim = {:6.2f}$\\degree$\n".format(azim_centre) \ + "Alt = {:6.2f}$\\degree$\n".format(alt_centre) \ + "Rot h = {:6.2f}$\\degree$\n".format(rot_horizon) \ + "FOV h = {:6.2f}$\\degree$\n".format(fov_h) \ + "FOV v = {:6.2f}$\\degree$".format(fov_v) \ plt.text(10, platepar.Y_res - 10, fov_centre_text, bbox=dict(facecolor='black', alpha=0.5), \ va='bottom', ha='left', fontsize=4, color='w', family='monospace') ### ### # Plot RA/Dec gridlines # addEquatorialGrid(plt, platepar, max_jd) plt.axis('off') plt.gca().get_xaxis().set_visible(False) plt.gca().get_yaxis().set_visible(False) plt.xlim([0, ff.avepixel.shape[1]]) plt.ylim([ff.avepixel.shape[0], 0]) # Remove the margins plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0) plt.savefig(os.path.join(night_dir_path, night_name + '_calib_report_astrometry.jpg'), \ bbox_inches='tight', pad_inches=0, dpi=dpi) if show_graphs: plt.show() else: plt.clf() plt.close() if max_matched_stars > 2: ### PHOTOMETRY FIT ### # If a flat is used, set the vignetting coeff to 0 if config.use_flat: platepar.vignetting_coeff = 0.0 # Extact intensities and mangitudes star_intensities = image_stars[:, 2] catalog_mags = matched_catalog_stars[:, 2] # Compute radius of every star from image centre radius_arr = np.hypot(image_stars[:, 0] - img_h / 2, image_stars[:, 1] - img_w / 2) # Fit the photometry on automated star intensities (use the fixed vignetting coeff, use robust fit) photom_params, fit_stddev, fit_resid, star_intensities, radius_arr, catalog_mags = \ photometryFitRobust(star_intensities, radius_arr, catalog_mags, \ fixed_vignetting=platepar.vignetting_coeff) photom_offset, _ = photom_params ### ### ### PLOT PHOTOMETRY ### # Note: An almost identical code exists in RMS.Astrometry.SkyFit in the PlateTool.photometry function dpi = 130 fig_p, (ax_p, ax_r) = plt.subplots(nrows=2, facecolor=None, figsize=(6.0, 7.0), dpi=dpi, \ gridspec_kw={'height_ratios':[2, 1]}) # Plot raw star intensities ax_p.scatter(-2.5 * np.log10(star_intensities), catalog_mags, s=5, c='r', alpha=0.5, label="Raw") # If a flat is used, disregard the vignetting if not config.use_flat: # Plot intensities of image stars corrected for vignetting lsp_corr_arr = np.log10(correctVignetting(star_intensities, radius_arr, \ platepar.vignetting_coeff)) ax_p.scatter(-2.5*lsp_corr_arr, catalog_mags, s=5, c='b', alpha=0.5, \ label="Corrected for vignetting") # Plot photometric offset from the platepar x_min, x_max = ax_p.get_xlim() y_min, y_max = ax_p.get_ylim() x_min_w = x_min - 3 x_max_w = x_max + 3 y_min_w = y_min - 3 y_max_w = y_max + 3 photometry_info = "Platepar: {:+.1f}*LSP + {:.2f} +/- {:.2f}".format(platepar.mag_0, \ platepar.mag_lev, platepar.mag_lev_stddev) \ + "\nVignetting coeff = {:.5f}".format(platepar.vignetting_coeff) \ + "\nGamma = {:.2f}".format(platepar.gamma) # Plot the photometry calibration from the platepar logsum_arr = np.linspace(x_min_w, x_max_w, 10) ax_p.plot(logsum_arr, logsum_arr + platepar.mag_lev, label=photometry_info, linestyle='--', \ color='k', alpha=0.5) # Plot the fitted photometry calibration fit_info = "Fit: {:+.1f}*LSP + {:.2f} +/- {:.2f}".format( -2.5, photom_offset, fit_stddev) ax_p.plot(logsum_arr, logsum_arr + photom_offset, label=fit_info, linestyle='--', color='b', alpha=0.75) ax_p.legend() ax_p.set_ylabel("Catalog magnitude ({:s})".format(mag_band_str)) ax_p.set_xlabel("Uncalibrated magnitude") # Set wider axis limits ax_p.set_xlim(x_min_w, x_max_w) ax_p.set_ylim(y_min_w, y_max_w) ax_p.invert_yaxis() ax_p.invert_xaxis() ax_p.grid() ### Plot photometry vs radius ### img_diagonal = np.hypot(img_h / 2, img_w / 2) # Plot photometry residuals (including vignetting) ax_r.scatter(radius_arr, fit_resid, c='b', alpha=0.75, s=5, zorder=3) # Plot a zero line ax_r.plot(np.linspace(0, img_diagonal, 10), np.zeros(10), linestyle='dashed', alpha=0.5, \ color='k') # Plot only when no flat is used if not config.use_flat: # Plot radius from centre vs. fit residual fit_resids_novignetting = catalog_mags - photomLine((np.array(star_intensities), \ np.array(radius_arr)), photom_offset, 0.0) ax_r.scatter(radius_arr, fit_resids_novignetting, s=5, c='r', alpha=0.5, zorder=3) px_sum_tmp = 1000 radius_arr_tmp = np.linspace(0, img_diagonal, 50) # Plot vignetting loss curve vignetting_loss = 2.5*np.log10(px_sum_tmp) \ - 2.5*np.log10(correctVignetting(px_sum_tmp, radius_arr_tmp, \ platepar.vignetting_coeff)) ax_r.plot(radius_arr_tmp, vignetting_loss, linestyle='dotted', alpha=0.5, color='k') ax_r.grid() ax_r.set_ylabel("Fit residuals (mag)") ax_r.set_xlabel("Radius from centre (px)") ax_r.set_xlim(0, img_diagonal) ### ### plt.tight_layout() plt.savefig(os.path.join(night_dir_path, night_name + '_calib_report_photometry.png'), dpi=150) if show_graphs: plt.show() else: plt.clf() plt.close()
def runCapture(config, duration=None, video_file=None, nodetect=False, detect_end=False, \ upload_manager=None, resume_capture=False): """ Run capture and compression for the given time.given Arguments: config: [config object] Configuration read from the .config file. Keyword arguments: duration: [float] Time in seconds to capture. None by default. video_file: [str] Path to the video file, if it was given as the video source. None by default. nodetect: [bool] If True, detection will not be performed. False by defualt. detect_end: [bool] If True, detection will be performed at the end of the night, when capture finishes. False by default. upload_manager: [UploadManager object] A handle to the UploadManager, which handles uploading files to the central server. None by default. resume_capture: [bool] Resume capture in the last data directory in CapturedFiles. Return: night_archive_dir: [str] Path to the archive folder of the processed night. """ global STOP_CAPTURE # Check if resuming capture to the last capture directory night_data_dir_name = None if resume_capture: log.info("Resuming capture in the last capture directory...") # Find the latest capture directory capturedfiles_path = os.path.join(os.path.abspath(config.data_dir), config.captured_dir) most_recent_dir_time = 0 for dir_name in sorted(os.listdir(capturedfiles_path)): dir_path_check = os.path.join(capturedfiles_path, dir_name) # Check it's a directory if os.path.isdir(dir_path_check): # Check if it starts with the correct station code if dir_name.startswith(str(config.stationID)): dir_mod_time = os.path.getmtime(dir_path_check) # Check that it is the most recent directory if (night_data_dir_name is None) or (dir_mod_time > most_recent_dir_time): night_data_dir_name = dir_name night_data_dir = dir_path_check most_recent_dir_time = dir_mod_time if night_data_dir_name is None: log.info( "Previous capture directory could not be found! Creating a new one..." ) else: log.info("Previous capture directory found: {:s}".format( night_data_dir)) # Resume run is finished now, reset resume flag cml_args.resume = False # Make a name for the capture data directory if night_data_dir_name is None: # Create a directory for captured files night_data_dir_name = str(config.stationID) + '_' \ + datetime.datetime.utcnow().strftime('%Y%m%d_%H%M%S_%f') # Full path to the data directory night_data_dir = os.path.join(os.path.abspath(config.data_dir), config.captured_dir, \ night_data_dir_name) # Wait before the capture starts if a time has been given if (not resume_capture) and (video_file is None): log.info("Waiting {:d} seconds before capture start...".format( int(config.capture_wait_seconds))) time.sleep(config.capture_wait_seconds) # Add a note about Patreon supporters print("################################################################") print("Thanks to our Patreon supporters in the 'Dinosaur Killer' class:") print("- Myron Valenta") print("https://www.patreon.com/globalmeteornetwork") print("\n\n\n" \ + " .:' .:' .:' .:' \n"\ + " _.::' _.::' _.::' _.::' \n"\ + " (_.' (_.' (_.' (_.' \n"\ + " __ \n"\ + " / _) \n"\ + "_\\/_ _/\\/\\/\\_/ / _\\/_ \n"\ + "/o\\ _| / //o\\ \n"\ + " | _| ( | ( | | \n"\ + "_|____ /__.-'|_|--|_| ______|__\n") print("################################################################") # Make a directory for the night mkdirP(night_data_dir) log.info('Data directory: ' + night_data_dir) # Copy the used config file to the capture directory if os.path.isfile(config.config_file_name): try: shutil.copy2(config.config_file_name, os.path.join(night_data_dir, ".config")) except: log.error("Cannot copy the config file to the capture directory!") # Get the platepar file platepar, platepar_path, platepar_fmt = getPlatepar(config, night_data_dir) # If the platepar is not none, set the FOV from it if platepar is not None: config.fov_w = platepar.fov_h config.fov_h = platepar.fov_v log.info('Initializing frame buffers...') ### For some reason, the RPi 3 does not like memory chunks which size is the multipier of its L2 ### cache size (512 kB). When such a memory chunk is provided, the compression becomes 10x slower ### then usual. We are applying a dirty fix here where we just add an extra image row and column ### if such a memory chunk will be created. The compression is performed, and the image is cropped ### back to its original dimensions. array_pad = 0 # Check if the image dimensions are divisible by RPi3 L2 cache size and add padding if (256 * config.width * config.height) % (512 * 1024) == 0: array_pad = 1 # Init arrays for parallel compression on 2 cores sharedArrayBase = multiprocessing.Array( ctypes.c_uint8, 256 * (config.width + array_pad) * (config.height + array_pad)) sharedArray = np.ctypeslib.as_array(sharedArrayBase.get_obj()) sharedArray = sharedArray.reshape(256, (config.height + array_pad), (config.width + array_pad)) startTime = multiprocessing.Value('d', 0.0) sharedArrayBase2 = multiprocessing.Array( ctypes.c_uint8, 256 * (config.width + array_pad) * (config.height + array_pad)) sharedArray2 = np.ctypeslib.as_array(sharedArrayBase2.get_obj()) sharedArray2 = sharedArray2.reshape(256, (config.height + array_pad), (config.width + array_pad)) startTime2 = multiprocessing.Value('d', 0.0) log.info('Initializing frame buffers done!') # Check if the detection should be performed or not if nodetect: detector = None else: if detect_end: # Delay detection until the end of the night delay_detection = duration else: # Delay the detection for 2 minutes after capture start (helps stability) delay_detection = 120 # Add an additional postprocessing delay delay_detection += config.postprocess_delay # Set a flag file to indicate that previous files are being loaded (if any) capture_resume_file_path = os.path.join( config.data_dir, config.capture_resume_flag_file) with open(capture_resume_file_path, 'w') as f: pass # Initialize the detector detector = QueuedPool(detectStarsAndMeteors, cores=1, log=log, delay_start=delay_detection, \ backup_dir=night_data_dir) detector.startPool() # If the capture is being resumed into the directory, load all previously saved FF files if resume_capture: # Load all preocessed FF files for i, ff_name in enumerate(sorted(os.listdir(night_data_dir))): # Every 50 files loaded, update the flag file if i % 50 == 0: with open(capture_resume_file_path, 'a') as f: f.write("{:d}\n".format(i)) # Check if the file is a valid FF files ff_path = os.path.join(night_data_dir, ff_name) if os.path.isfile(ff_path) and (str( config.stationID) in ff_name) and validFFName(ff_name): # Add the FF file to the detector detector.addJob([night_data_dir, ff_name, config], wait_time=0.005) log.info( "Added existing FF files for detection: {:s}".format( ff_name)) # Remove the flag file if os.path.isfile(capture_resume_file_path): try: os.remove(capture_resume_file_path) except: log.error("There was an error during removing the capture resume flag file: " \ + capture_resume_file_path) # Initialize buffered capture bc = BufferedCapture(sharedArray, startTime, sharedArray2, startTime2, config, video_file=video_file) # Initialize the live image viewer if config.live_maxpixel_enable: # Enable showing the live JPG config.live_jpg = True live_jpg_path = os.path.join(config.data_dir, 'live.jpg') live_view = LiveViewer(live_jpg_path, image=True, slideshow=False, banner_text="Live") live_view.start() else: live_view = None # Initialize compression compressor = Compressor(night_data_dir, sharedArray, startTime, sharedArray2, startTime2, config, detector=detector) # Start buffered capture bc.startCapture() # Init and start the compression compressor.start() # Capture until Ctrl+C is pressed wait(duration, compressor) # If capture was manually stopped, end capture if STOP_CAPTURE: log.info('Ending capture...') # Stop the capture log.debug('Stopping capture...') bc.stopCapture() log.debug('Capture stopped') dropped_frames = bc.dropped_frames log.info('Total number of late or dropped frames: ' + str(dropped_frames)) # Stop the compressor log.debug('Stopping compression...') detector = compressor.stop() # Free shared memory after the compressor is done try: log.debug('Freeing frame buffers...') del sharedArrayBase del sharedArray del sharedArrayBase2 del sharedArray2 except Exception as e: log.debug('Freeing frame buffers failed with error:' + repr(e)) log.debug(repr(traceback.format_exception(*sys.exc_info()))) log.debug('Compression stopped') if live_view is not None: # Stop the live viewer log.debug('Stopping live viewer...') live_view.stop() live_view.join() del live_view live_view = None log.debug('Live view stopped') # If detection should be performed if not nodetect: try: log.info('Finishing up the detection, ' + str(detector.input_queue.qsize()) \ + ' files to process...') except: print( 'Finishing up the detection... error when getting input queue size!' ) # Reset the Ctrl+C to KeyboardInterrupt resetSIGINT() try: # If there are some more files to process, process them on more cores if detector.input_queue.qsize() > 0: # Let the detector use all cores, but leave 2 free available_cores = multiprocessing.cpu_count() - 2 if available_cores > 1: log.info('Running the detection on {:d} cores...'.format( available_cores)) # Start the detector detector.updateCoreNumber(cores=available_cores) log.info('Waiting for the detection to finish...') # Wait for the detector to finish and close it detector.closePool() log.info('Detection finished!') except KeyboardInterrupt: log.info('Ctrl + C pressed, exiting...') if upload_manager is not None: # Stop the upload manager if upload_manager.is_alive(): log.debug('Closing upload manager...') upload_manager.stop() del upload_manager # Terminate the detector if detector is not None: del detector sys.exit() # Set the Ctrl+C back to 'soft' program kill setSIGINT() ### SAVE DETECTIONS TO FILE log.info('Collecting results...') # Get the detection results from the queue detection_results = detector.getResults() else: detection_results = [] # Save detection to disk and archive detection night_archive_dir, archive_name, _ = processNight(night_data_dir, config, \ detection_results=detection_results, nodetect=nodetect) # Put the archive up for upload if upload_manager is not None: log.info('Adding file to upload list: ' + archive_name) upload_manager.addFiles([archive_name]) log.info('File added...') # Delay the upload, if the delay is given upload_manager.delayNextUpload(delay=60 * config.upload_delay) # Delete detector backup files if detector is not None: detector.deleteBackupFiles() # If the capture was run for a limited time, run the upload right away if (duration is not None) and (upload_manager is not None): log.info('Uploading data before exiting...') upload_manager.uploadData() # Run the external script runExternalScript(night_data_dir, night_archive_dir, config) # If capture was manually stopped, end program if STOP_CAPTURE: log.info('Ending program') # Stop the upload manager if upload_manager is not None: if upload_manager.is_alive(): upload_manager.stop() log.info('Closing upload manager...') sys.exit() return night_archive_dir