def run_rmclean(mDictS, aDict, cutoff, maxIter=1000, gain=0.1, nBits=32, showPlots=False, verbose=False, log=print): """Run RM-CLEAN on a complex FDF spectrum given a RMSF. Args: mDictS (dict): Summary of RM synthesis results. aDict (dict): Data output by RM synthesis. cutoff (float): CLEAN cutoff in flux units Kwargs: maxIter (int): Maximum number of CLEAN iterations per pixel. gain (float): CLEAN loop gain. nBits (int): Precision of floating point numbers. showPlots (bool): Show plots? verbose (bool): Verbosity. log (function): Which logging function to use. Returns: mDict (dict): Summary of RMCLEAN results. arrdict (dict): Data output by RMCLEAN. """ phiArr_radm2 = aDict["phiArr_radm2"] freqArr_Hz = aDict["freqArr_Hz"] weightArr = aDict["weightArr"] dirtyFDF = aDict["dirtyFDF"] phi2Arr_radm2 = aDict["phi2Arr_radm2"] RMSFArr = aDict["RMSFArr"] lambdaSqArr_m2 = np.power(C / freqArr_Hz, 2.0) # If the cutoff is negative, assume it is a sigma level if verbose: log("Expected RMS noise = %.4g flux units" % (mDictS["dFDFth"])) if cutoff < 0: if verbose: log("Using a sigma cutoff of %.1f." % (-1 * cutoff)) cutoff = -1 * mDictS["dFDFth"] * cutoff if verbose: log("Absolute value = %.3g" % cutoff) else: if verbose: log("Using an absolute cutoff of %.3g (%.1f x expected RMS)." % (cutoff, cutoff / mDictS["dFDFth"])) startTime = time.time() # Perform RM-clean on the spectrum cleanFDF, ccArr, iterCountArr, residFDF = \ do_rmclean_hogbom(dirtyFDF = dirtyFDF, phiArr_radm2 = phiArr_radm2, RMSFArr = RMSFArr, phi2Arr_radm2 = phi2Arr_radm2, fwhmRMSFArr = np.array(mDictS["fwhmRMSF"]), cutoff = cutoff, maxIter = maxIter, gain = gain, verbose = verbose, doPlots = showPlots) # ALTERNATIVE RM_CLEAN CODE ----------------------------------------------# ''' cleanFDF, ccArr, fwhmRMSF, iterCount = \ do_rmclean(dirtyFDF = dirtyFDF, phiArr = phiArr_radm2, lamSqArr = lamSqArr_m2, cutoff = cutoff, maxIter = maxIter, gain = gain, weight = weightArr, RMSFArr = RMSFArr, RMSFphiArr = phi2Arr_radm2, fwhmRMSF = mDictS["fwhmRMSF"], doPlots = True) ''' #-------------------------------------------------------------------------# endTime = time.time() cputime = (endTime - startTime) if verbose: log("> RM-CLEAN completed in %.4f seconds." % cputime) # Measure the parameters of the deconvolved FDF mDict = measure_FDF_parms( FDF=cleanFDF, phiArr=phiArr_radm2, fwhmRMSF=mDictS["fwhmRMSF"], #dFDF = mDictS["dFDFth"], lamSqArr_m2=lambdaSqArr_m2, lam0Sq=mDictS["lam0Sq_m2"]) mDict["cleanCutoff"] = cutoff mDict["nIter"] = int(iterCountArr) # Measure the complexity of the clean component spectrum mDict["mom2CCFDF"] = measure_fdf_complexity(phiArr=phiArr_radm2, FDF=ccArr) #Calculating observed errors (based on dFDFcorMAD) mDict["dPhiObserved_rm2"] = mDict["dPhiPeakPIfit_rm2"] * mDict[ "dFDFcorMAD"] / mDictS["dFDFth"] mDict["dAmpObserved"] = mDict["dFDFcorMAD"] mDict["dPolAngleFitObserved_deg"] = mDict["dPolAngleFit_deg"] * mDict[ "dFDFcorMAD"] / mDictS["dFDFth"] nChansGood = np.sum(np.where(lambdaSqArr_m2 == lambdaSqArr_m2, 1.0, 0.0)) varLamSqArr_m2 = (np.sum(lambdaSqArr_m2**2.0) - np.sum(lambdaSqArr_m2)**2.0 / nChansGood) / (nChansGood - 1) mDict["dPolAngle0ChanObserved_deg"] = \ np.degrees(np.sqrt( mDict["dFDFcorMAD"]**2.0 / (4.0*(nChansGood-2.0)*mDict["ampPeakPIfit"]**2.0) * ((nChansGood-1)/nChansGood + mDictS["lam0Sq_m2"]**2.0/varLamSqArr_m2) )) if verbose: # Print the results to the screen log() log('-' * 80) log('RESULTS:\n') log('FWHM RMSF = %.4g rad/m^2' % (mDictS["fwhmRMSF"])) log('Pol Angle = %.4g (+/-%.4g observed, +- %.4g theoretical) deg' % (mDict["polAngleFit_deg"], mDict["dPolAngleFitObserved_deg"], mDict["dPolAngleFit_deg"])) log('Pol Angle 0 = %.4g (+/-%.4g observed, +- %.4g theoretical) deg' % (mDict["polAngle0Fit_deg"], mDict["dPolAngle0ChanObserved_deg"], mDict["dPolAngle0Fit_deg"])) log('Peak FD = %.4g (+/-%.4g observed, +- %.4g theoretical) rad/m^2' % (mDict["phiPeakPIfit_rm2"], mDict["dPhiObserved_rm2"], mDict["dPhiPeakPIfit_rm2"])) log('freq0_GHz = %.4g ' % (mDictS["freq0_Hz"] / 1e9)) log('I freq0 = %.4g %s' % (mDictS["Ifreq0"], mDictS["units"])) log('Peak PI = %.4g (+/-%.4g observed, +- %.4g theoretical) %s' % (mDict["ampPeakPIfit"], mDict["dAmpObserved"], mDict["dAmpPeakPIfit"], mDictS["units"])) log('QU Noise = %.4g %s' % (mDictS["dQU"], mDictS["units"])) log('FDF Noise (theory) = %.4g %s' % (mDictS["dFDFth"], mDictS["units"])) log('FDF Noise (Corrected MAD) = %.4g %s' % (mDict["dFDFcorMAD"], mDictS["units"])) log('FDF Noise (rms) = %.4g %s' % (mDict["dFDFrms"], mDictS["units"])) log('FDF SNR = %.4g ' % (mDict["snrPIfit"])) log() log('-' * 80) # Pause to display the figure if showPlots: plot_clean_spec(phiArr_radm2, dirtyFDF, cleanFDF, ccArr, residFDF, cutoff, mDictS["units"]) print("Press <RETURN> to exit ...", end=' ') input() #add array dictionary arrdict = dict() arrdict["phiArr_radm2"] = phiArr_radm2 arrdict["freqArr_Hz"] = freqArr_Hz arrdict["cleanFDF"] = cleanFDF arrdict["ccArr"] = ccArr arrdict["iterCountArr"] = iterCountArr arrdict["residFDF"] = residFDF return mDict, arrdict
def run_rmclean(mDict, aDict, cutoff, maxIter=1000, gain=0.1, nBits=32, showPlots=False, prefixOut="", verbose=False, log=print, saveFigures=False, window=None): """Run RM-CLEAN on a complex FDF spectrum given a RMSF. Args: mDict (dict): Summary of RM synthesis results. aDict (dict): Data output by RM synthesis. cutoff (float): CLEAN cutoff in flux units (positive) or as multiple of theoretical noise (negative) (i.e. -8 = clean to 8 sigma threshold) Kwargs: maxIter (int): Maximum number of CLEAN iterations per pixel. gain (float): CLEAN loop gain. nBits (int): Precision of floating point numbers. showPlots (bool): Show plots? verbose (bool): Verbosity. log (function): Which logging function to use. window (float): Threshold for deeper windowed cleaning Returns: mDict_cl (dict): Summary of RMCLEAN results. aDict_cl (dict): Data output by RMCLEAN. """ phiArr_radm2 = aDict["phiArr_radm2"] freqArr_Hz = aDict["freqArr_Hz"] weightArr = aDict["weightArr"] dirtyFDF = aDict["dirtyFDF"] phi2Arr_radm2 = aDict["phi2Arr_radm2"] RMSFArr = aDict["RMSFArr"] lambdaSqArr_m2 = np.power(C / freqArr_Hz, 2.0) # If the cutoff is negative, assume it is a sigma level if verbose: log("Expected RMS noise = %.4g flux units" % (mDict["dFDFth"])) if cutoff < 0: if verbose: log("Using a sigma cutoff of %.1f." % (-1 * cutoff)) cutoff = -1 * mDict["dFDFth"] * cutoff if verbose: log("Absolute value = %.3g" % cutoff) else: if verbose: log("Using an absolute cutoff of %.3g (%.1f x expected RMS)." % (cutoff, cutoff / mDict["dFDFth"])) if window is None: window = np.nan else: if window < 0: if verbose: log("Using a window sigma cutoff of %.1f." % (-1 * window)) window = -1 * mDict["dFDFth"] * window if verbose: log("Absolute value = %.3g" % window) else: if verbose: log("Using an absolute window cutoff of %.3g (%.1f x expected RMS)." % (window, window / mDict["dFDFth"])) startTime = time.time() # Perform RM-clean on the spectrum cleanFDF, ccArr, iterCountArr, residFDF = \ do_rmclean_hogbom(dirtyFDF = dirtyFDF, phiArr_radm2 = phiArr_radm2, RMSFArr = RMSFArr, phi2Arr_radm2 = phi2Arr_radm2, fwhmRMSFArr = np.array(mDict["fwhmRMSF"]), cutoff = cutoff, maxIter = maxIter, gain = gain, verbose = verbose, doPlots = showPlots, window = window ) # ALTERNATIVE RM_CLEAN CODE ----------------------------------------------# ''' cleanFDF, ccArr, fwhmRMSF, iterCount = \ do_rmclean(dirtyFDF = dirtyFDF, phiArr = phiArr_radm2, lamSqArr = lamSqArr_m2, cutoff = cutoff, maxIter = maxIter, gain = gain, weight = weightArr, RMSFArr = RMSFArr, RMSFphiArr = phi2Arr_radm2, fwhmRMSF = mDict["fwhmRMSF"], doPlots = True) ''' #-------------------------------------------------------------------------# endTime = time.time() cputime = (endTime - startTime) if verbose: log("> RM-CLEAN completed in %.4f seconds." % cputime) # Measure the parameters of the deconvolved FDF mDict_cl = measure_FDF_parms(FDF=cleanFDF, phiArr=phiArr_radm2, fwhmRMSF=mDict["fwhmRMSF"], dFDF=mDict["dFDFth"], lamSqArr_m2=lambdaSqArr_m2, lam0Sq=mDict["lam0Sq_m2"]) mDict_cl["cleanCutoff"] = cutoff mDict_cl["nIter"] = int(iterCountArr) # Measure the complexity of the clean component spectrum mDict_cl["mom2CCFDF"] = measure_fdf_complexity(phiArr=phiArr_radm2, FDF=ccArr) #Calculating observed errors (based on dFDFcorMAD) mDict_cl["dPhiObserved_rm2"] = mDict_cl["dPhiPeakPIfit_rm2"] * mDict_cl[ "dFDFcorMAD"] / mDict["dFDFth"] mDict_cl["dAmpObserved"] = mDict_cl["dFDFcorMAD"] mDict_cl["dPolAngleFitObserved_deg"] = mDict_cl[ "dPolAngleFit_deg"] * mDict_cl["dFDFcorMAD"] / mDict["dFDFth"] mDict_cl["dPolAngleFit0Observed_deg"] = mDict_cl[ "dPolAngle0Fit_deg"] * mDict_cl["dFDFcorMAD"] / mDict["dFDFth"] if verbose: # Print the results to the screen log() log('-' * 80) log('RESULTS:\n') log('FWHM RMSF = %.4g rad/m^2' % (mDict["fwhmRMSF"])) log('Pol Angle = %.4g (+/-%.4g observed, +- %.4g theoretical) deg' % (mDict_cl["polAngleFit_deg"], mDict_cl["dPolAngleFitObserved_deg"], mDict_cl["dPolAngleFit_deg"])) log('Pol Angle 0 = %.4g (+/-%.4g observed, +- %.4g theoretical) deg' % (mDict_cl["polAngle0Fit_deg"], mDict_cl["dPolAngleFit0Observed_deg"], mDict_cl["dPolAngle0Fit_deg"])) log('Peak FD = %.4g (+/-%.4g observed, +- %.4g theoretical) rad/m^2' % (mDict_cl["phiPeakPIfit_rm2"], mDict_cl["dPhiObserved_rm2"], mDict_cl["dPhiPeakPIfit_rm2"])) log('freq0_GHz = %.4g ' % (mDict["freq0_Hz"] / 1e9)) log('I freq0 = %.4g %s' % (mDict["Ifreq0"], mDict["units"])) log('Peak PI = %.4g (+/-%.4g observed, +- %.4g theoretical) %s' % (mDict_cl["ampPeakPIfit"], mDict_cl["dAmpObserved"], mDict_cl["dAmpPeakPIfit"], mDict["units"])) log('QU Noise = %.4g %s' % (mDict["dQU"], mDict["units"])) log('FDF Noise (theory) = %.4g %s' % (mDict["dFDFth"], mDict["units"])) log('FDF Noise (Corrected MAD) = %.4g %s' % (mDict_cl["dFDFcorMAD"], mDict["units"])) log('FDF Noise (rms) = %.4g %s' % (mDict_cl["dFDFrms"], mDict["units"])) log('FDF SNR = %.4g ' % (mDict_cl["snrPIfit"])) log() log('-' * 80) # Pause to display the figure if showPlots or saveFigures: fdfFig = plot_clean_spec(phiArr_radm2, dirtyFDF, cleanFDF, ccArr, residFDF, cutoff, window, mDict["units"]) # Pause if plotting enabled if showPlots: plt.show() if saveFigures: if verbose: print("Saving CLEAN FDF plot:") outFilePlot = prefixOut + "_cleanFDF-plots.pdf" if verbose: print("> " + outFilePlot) fdfFig.savefig(outFilePlot, bbox_inches='tight') # print("Press <RETURN> to exit ...", end=' ') # input() #add array dictionary aDict_cl = dict() aDict_cl["phiArr_radm2"] = phiArr_radm2 aDict_cl["freqArr_Hz"] = freqArr_Hz aDict_cl["cleanFDF"] = cleanFDF aDict_cl["ccArr"] = ccArr aDict_cl["iterCountArr"] = iterCountArr aDict_cl["residFDF"] = residFDF return mDict_cl, aDict_cl
def run_rmclean(mDictS, aDict, cutoff, maxIter=1000, gain=0.1, prefixOut="", outDir="", nBits=32, showPlots=False, doAnimate=False, verbose=False, log=print): """ Run RM-CLEAN on a complex FDF spectrum given a RMSF. """ phiArr_radm2 = aDict["phiArr_radm2"] freqArr_Hz = aDict["freqArr_Hz"] weightArr = aDict["weightArr"] dirtyFDF = aDict["dirtyFDF"] phi2Arr_radm2 = aDict["phi2Arr_radm2"] RMSFArr = aDict["RMSFArr"] lambdaSqArr_m2 = np.power(C / freqArr_Hz, 2.0) # If the cutoff is negative, assume it is a sigma level if verbose: log("Expected RMS noise = %.4g mJy/beam/rmsf" % (mDictS["dFDFth_Jybm"] * 1e3)) if cutoff < 0: log("Using a sigma cutoff of %.1f." % (-1 * cutoff)) cutoff = -1 * mDictS["dFDFth_Jybm"] * cutoff log("Absolute value = %.3g" % cutoff) else: log("Using an absolute cutoff of %.3g (%.1f x expected RMS)." % (cutoff, cutoff / mDictS["dFDFth_Jybm"])) startTime = time.time() # Perform RM-clean on the spectrum cleanFDF, ccArr, iterCountArr = \ do_rmclean_hogbom(dirtyFDF = dirtyFDF, phiArr_radm2 = phiArr_radm2, RMSFArr = RMSFArr, phi2Arr_radm2 = phi2Arr_radm2, fwhmRMSFArr = np.array(mDictS["fwhmRMSF"]), cutoff = cutoff, maxIter = maxIter, gain = gain, verbose = verbose, doPlots = showPlots, doAnimate = doAnimate) # ALTERNATIVE RM_CLEAN CODE ----------------------------------------------# ''' cleanFDF, ccArr, fwhmRMSF, iterCount = \ do_rmclean(dirtyFDF = dirtyFDF, phiArr = phiArr_radm2, lamSqArr = lamSqArr_m2, cutoff = cutoff, maxIter = maxIter, gain = gain, weight = weightArr, RMSFArr = RMSFArr, RMSFphiArr = phi2Arr_radm2, fwhmRMSF = mDictS["fwhmRMSF"], doPlots = True) ''' #-------------------------------------------------------------------------# endTime = time.time() cputime = (endTime - startTime) log("> RM-CLEAN completed in %.4f seconds." % cputime) # Measure the parameters of the deconvolved FDF mDict = measure_FDF_parms( FDF=cleanFDF, phiArr=phiArr_radm2, fwhmRMSF=mDictS["fwhmRMSF"], #dFDF = mDictS["dFDFth_Jybm"], lamSqArr_m2=lambdaSqArr_m2, lam0Sq=mDictS["lam0Sq_m2"]) mDict["cleanCutoff"] = cutoff mDict["nIter"] = int(iterCountArr) # Measure the complexity of the clean component spectrum mDict["mom2CCFDF"] = measure_fdf_complexity(phiArr=phiArr_radm2, FDF=ccArr) #Calculating observed errors (based on dFDFcorMAD) mDict["dPhiObserved_rm2"] = mDict["dPhiPeakPIfit_rm2"] * mDict[ "dFDFcorMAD_Jybm"] / mDictS["dFDFth_Jybm"] mDict["dAmpObserved_Jybm"] = mDict["dFDFcorMAD_Jybm"] mDict["dPolAngleFitObserved_deg"] = mDict["dPolAngleFit_deg"] * mDict[ "dFDFcorMAD_Jybm"] / mDictS["dFDFth_Jybm"] nChansGood = np.sum(np.where(lambdaSqArr_m2 == lambdaSqArr_m2, 1.0, 0.0)) varLamSqArr_m2 = (np.sum(lambdaSqArr_m2**2.0) - np.sum(lambdaSqArr_m2)**2.0 / nChansGood) / (nChansGood - 1) mDict["dPolAngle0ChanObserved_deg"] = \ np.degrees(np.sqrt( mDict["dFDFcorMAD_Jybm"]**2.0 / (4.0*(nChansGood-2.0)*mDict["ampPeakPIfit_Jybm"]**2.0) * ((nChansGood-1)/nChansGood + mDictS["lam0Sq_m2"]**2.0/varLamSqArr_m2) )) # Save the deconvolved FDF and CC model to ASCII files log("Saving the clean FDF and component model to ASCII files.") outFile = prefixOut + "_FDFclean.dat" log("> %s" % outFile) np.savetxt(outFile, list(zip(phiArr_radm2, cleanFDF.real, cleanFDF.imag))) outFile = prefixOut + "_FDFmodel.dat" log("> %s" % outFile) np.savetxt(outFile, list(zip(phiArr_radm2, ccArr.real, ccArr.imag))) # Save the RM-clean measurements to a "key=value" text file log("Saving the measurements on the FDF in 'key=val' and JSON formats.") outFile = prefixOut + "_RMclean.dat" log("> %s" % outFile) FH = open(outFile, "w") for k, v in mDict.items(): FH.write("%s=%s\n" % (k, v)) FH.close() outFile = prefixOut + "_RMclean.json" log("> %s" % outFile) json.dump(mDict, open(outFile, "w")) # Print the results to the screen log() log('-' * 80) log('RESULTS:\n') log('FWHM RMSF = %.4g rad/m^2' % (mDictS["fwhmRMSF"])) log('Pol Angle = %.4g (+/-%.4g observed, +- %.4g theoretical) deg' % (mDict["polAngleFit_deg"], mDict["dPolAngleFitObserved_deg"], mDict["dPolAngleFit_deg"])) log('Pol Angle 0 = %.4g (+/-%.4g observed, +- %.4g theoretical) deg' % (mDict["polAngle0Fit_deg"], mDict["dPolAngle0ChanObserved_deg"], mDict["dPolAngle0Fit_deg"])) log('Peak FD = %.4g (+/-%.4g observed, +- %.4g theoretical) rad/m^2' % (mDict["phiPeakPIfit_rm2"], mDict["dPhiObserved_rm2"], mDict["dPhiPeakPIfit_rm2"])) log('freq0_GHz = %.4g ' % (mDictS["freq0_Hz"] / 1e9)) log('I freq0 = %.4g mJy/beam' % (mDictS["Ifreq0_mJybm"])) log('Peak PI = %.4g (+/-%.4g observed, +- %.4g theoretical) mJy/beam' % (mDict["ampPeakPIfit_Jybm"] * 1e3, mDict["dAmpObserved_Jybm"] * 1e3, mDict["dAmpPeakPIfit_Jybm"] * 1e3)) log('QU Noise = %.4g mJy/beam' % (mDictS["dQU_Jybm"] * 1e3)) log('FDF Noise (theory) = %.4g mJy/beam' % (mDictS["dFDFth_Jybm"] * 1e3)) log('FDF Noise (Corrected MAD) = %.4g mJy/beam' % (mDict["dFDFcorMAD_Jybm"] * 1e3)) log('FDF Noise (rms) = %.4g mJy/beam' % (mDict["dFDFrms_Jybm"] * 1e3)) log('FDF SNR = %.4g ' % (mDict["snrPIfit"])) log() log('-' * 80) # Pause to display the figure if showPlots or doAnimate: print("Press <RETURN> to exit ...", end=' ') input() return mDict
def run_rmclean(fdfFile, rmsfFile, weightFile, rmSynthFile, cutoff, maxIter=1000, gain=0.1, prefixOut="", outDir="", nBits=32, showPlots=False, doAnimate=False): """ Run RM-CLEAN on a complex FDF spectrum given a RMSF. """ # Default data types dtFloat = "float" + str(nBits) dtComplex = "complex" + str(2 * nBits) # Read the frequency vector for the lambda^2 array freqArr_Hz, weightArr = np.loadtxt(weightFile, unpack=True, dtype=dtFloat) lambdaSqArr_m2 = np.power(C / freqArr_Hz, 2.0) # Read the FDF from the ASCII file phiArr_radm2, FDFreal, FDFimag = np.loadtxt(fdfFile, unpack=True, dtype=dtFloat) dirtyFDF = FDFreal + 1j * FDFimag # Read the RMSF from the ASCII file phi2Arr_radm2, RMSFreal, RMSFimag = np.loadtxt(rmsfFile, unpack=True, dtype=dtFloat) RMSFArr = RMSFreal + 1j * RMSFimag # Read the RM-synthesis parameters from the JSON file mDictS = json.load(open(rmSynthFile, "r")) # If the cutoff is negative, assume it is a sigma level print "Expected RMS noise = %.4g mJy/beam/rmsf" % \ (mDictS["dFDFth_Jybm"]*1e3) if cutoff < 0: print "Using a sigma cutoff of %.1f." % (-1 * cutoff), cutoff = -1 * mDictS["dFDFth_Jybm"] * cutoff print "Absolute value = %.3g" % cutoff else: print "Using an absolute cutoff of %.3g (%.1f x expected RMS)." % \ (cutoff, cutoff/mDictS["dFDFth_Jybm"]) startTime = time.time() # Perform RM-clean on the spectrum cleanFDF, ccArr, iterCountArr = \ do_rmclean_hogbom(dirtyFDF = dirtyFDF, phiArr_radm2 = phiArr_radm2, RMSFArr = RMSFArr, phi2Arr_radm2 = phi2Arr_radm2, fwhmRMSFArr = np.array(mDictS["fwhmRMSF"]), cutoff = cutoff, maxIter = maxIter, gain = gain, verbose = False, doPlots = showPlots, doAnimate = doAnimate) cleanFDF #/= 1e3 ccArr #/= 1e3 # ALTERNATIVE RM_CLEAN CODE ----------------------------------------------# ''' cleanFDF, ccArr, fwhmRMSF, iterCount = \ do_rmclean(dirtyFDF = dirtyFDF, phiArr = phiArr_radm2, lamSqArr = lamSqArr_m2, cutoff = cutoff, maxIter = maxIter, gain = gain, weight = weightArr, RMSFArr = RMSFArr, RMSFphiArr = phi2Arr_radm2, fwhmRMSF = mDictS["fwhmRMSF"], doPlots = True) ''' #-------------------------------------------------------------------------# endTime = time.time() cputime = (endTime - startTime) print "> RM-CLEAN completed in %.4f seconds." % cputime # Measure the parameters of the deconvolved FDF mDict = measure_FDF_parms( FDF=cleanFDF, phiArr=phiArr_radm2, fwhmRMSF=mDictS["fwhmRMSF"], #dFDF = mDictS["dFDFth_Jybm"], lamSqArr_m2=lambdaSqArr_m2, lam0Sq=mDictS["lam0Sq_m2"]) mDict["cleanCutoff"] = cutoff mDict["nIter"] = int(iterCountArr) # Measure the complexity of the clean component spectrum mDict["mom2CCFDF"] = measure_fdf_complexity(phiArr=phiArr_radm2, FDF=ccArr) # Save the deconvolved FDF and CC model to ASCII files print "Saving the clean FDF and component model to ASCII files." outFile = prefixOut + "_FDFclean.dat" print "> %s" % outFile np.savetxt(outFile, zip(phiArr_radm2, cleanFDF.real, cleanFDF.imag)) outFile = prefixOut + "_FDFmodel.dat" print "> %s" % outFile np.savetxt(outFile, zip(phiArr_radm2, ccArr)) # Save the RM-clean measurements to a "key=value" text file print "Saving the measurements on the FDF in 'key=val' and JSON formats." outFile = prefixOut + "_RMclean.dat" print "> %s" % outFile FH = open(outFile, "w") for k, v in mDict.iteritems(): FH.write("%s=%s\n" % (k, v)) FH.close() outFile = prefixOut + "_RMclean.json" print "> %s" % outFile json.dump(mDict, open(outFile, "w")) # Print the results to the screen print print '-' * 80 print 'RESULTS:\n' print 'FWHM RMSF = %.4g rad/m^2' % (mDictS["fwhmRMSF"]) print 'Pol Angle = %.4g (+/-%.4g) deg' % (mDict["polAngleFit_deg"], mDict["dPolAngleFit_deg"]) print 'Pol Angle 0 = %.4g (+/-%.4g) deg' % (mDict["polAngle0Fit_deg"], mDict["dPolAngle0Fit_deg"]) print 'Peak FD = %.4g (+/-%.4g) rad/m^2' % (mDict["phiPeakPIfit_rm2"], mDict["dPhiPeakPIfit_rm2"]) print 'freq0_GHz = %.4g ' % (mDictS["freq0_Hz"] / 1e9) print 'I freq0 = %.4g mJy/beam' % (mDictS["Ifreq0_mJybm"]) print 'Peak PI = %.4g (+/-%.4g) mJy/beam' % ( mDict["ampPeakPIfit_Jybm"] * 1e3, mDict["dAmpPeakPIfit_Jybm"] * 1e3) print 'QU Noise = %.4g mJy/beam' % (mDictS["dQU_Jybm"] * 1e3) print 'FDF Noise (measure) = %.4g mJy/beam' % (mDict["dFDFms_Jybm"] * 1e3) print 'FDF SNR = %.4g ' % (mDict["snrPIfit"]) print print '-' * 80 # Pause to display the figure if showPlots or doAnimate: print "Press <RETURN> to exit ...", raw_input()