示例#1
0
class DDPGAgent:
    def __init__(self, args, env, env_params):
        self.args = args
        self.env = env
        self.env_params = env_params

        # _build up the actor/critic evaluated network
        self.actor_net = Actor(env_params, hidden_units=256)
        self.critic_net = Critic(env_params, hidden_units=256)

        # sync the networks across the cpus for parallel training (when running at workstation)
        sync_networks(self.actor_net)
        sync_networks(self.critic_net)

        # _build up the actor/critic target network
        self.actor_target_net = Actor(env_params, hidden_units=256)
        self.critic_target_net = Critic(env_params, hidden_units=256)

        # if gpu is used
        if self.args.cuda:
            self.actor_net.cuda()
            self.critic_net.cuda()
            self.actor_target_net.cuda()
            self.critic_target_net.cuda()

        # the optimizer of the networks
        self.actor_optimizer = torch.optim.Adam(
            self.actor_net.parameters(), lr=self.args.learning_rate_actor)
        self.critic_optimizer = torch.optim.Adam(
            self.critic_net.parameters(), lr=self.args.learning_rate_critic)

        # HER sample function
        self.her_sample = HER(self.args.replay_strategy,
                              self.args.replay_ratio, self.env.compute_reward)

        # experience buffer
        self.exp_buffer = ReplayBuffer(self.env_params, self.args.buffer_size,
                                       self.her_sample.her_sample_transitions)

        # the normalization of the observation and goal
        self.obs_norm = Normalizer(size=env_params['obs'],
                                   clip_range=self.args.clip_range)
        self.goal_norm = Normalizer(size=env_params['d_goal'],
                                    clip_range=self.args.clip_range)

        # create the dictionary to save the model
        if MPI.COMM_WORLD.Get_rank() == 0:
            if not os.path.exists(self.args.save_dir):
                os.mkdir(self.args.save_dir)

            # get the model path
            self.model_path = os.path.join(self.args.save_dir,
                                           self.args.env_name)
            if not os.path.exists(self.model_path):
                os.mkdir(self.model_path)

    ###############################
    # Name: learning
    # Function: Training the model
    # Comment:
    ###############################
    def learning(self):
        success_rate_history = []
        for epoch in range(self.args.n_epochs):
            for _ in range(self.args.n_cycles):
                exp_obs_buff, exp_a_goal_buff, exp_d_goal_buff, exp_actions_buff = [], [], [], []
                for _ in range(self.args.num_exp_per_mpi):
                    # reset the environment and experience
                    exp_obs, exp_a_goal, exp_d_goal, exp_actions = [], [], [], []
                    observations = self.env.reset()
                    obs = observations['observation']
                    a_goal = observations['achieved_goal']
                    d_goal = observations['desired_goal']

                    # interact with the environment
                    for t in range(self.env_params['max_timesteps']):
                        with torch.no_grad():
                            input_tensor = self._pre_process_inputs(
                                obs, d_goal)
                            policy_predictions = self.actor_net(input_tensor)
                            action = self._choose_action(policy_predictions)

                        # get the observations from the action
                        observations_next, _, _, info = self.env.step(action)
                        obs_next = observations_next['observation']
                        a_goal_next = observations_next['achieved_goal']
                        exp_obs.append(obs.copy())
                        exp_a_goal.append(a_goal.copy())
                        exp_d_goal.append(d_goal.copy())
                        exp_actions.append(action.copy())
                        # update the state
                        obs = obs_next
                        a_goal = a_goal_next
                    exp_obs.append(obs.copy())
                    exp_a_goal.append(a_goal.copy())
                    exp_obs_buff.append(exp_obs)
                    exp_a_goal_buff.append(exp_a_goal)
                    exp_d_goal_buff.append(exp_d_goal)
                    exp_actions_buff.append(exp_actions)
                exp_obs_buff = np.array(exp_obs_buff)
                exp_a_goal_buff = np.array(exp_a_goal_buff)
                exp_d_goal_buff = np.array(exp_d_goal_buff)
                exp_actions_buff = np.array(exp_actions_buff)
                # store the transitions
                self.exp_buffer.store_transition([
                    exp_obs_buff, exp_a_goal_buff, exp_d_goal_buff,
                    exp_actions_buff
                ])
                self._update_normalizer([
                    exp_obs_buff, exp_a_goal_buff, exp_d_goal_buff,
                    exp_actions_buff
                ])
                for _ in range(self.args.n_batches):
                    self._update_network()  # training the network
                # soft update the network parameter
                self._soft_update_target_network(self.actor_target_net,
                                                 self.actor_net)
                self._soft_update_target_network(self.critic_target_net,
                                                 self.critic_net)
            # start evaluation
            success_rate = self._evaluate_agent()
            if MPI.COMM_WORLD.Get_rank() == 0:
                print('[{}] epoch is: {}, eval success rate is: {:.3f}'.format(
                    datetime.now(), epoch, success_rate))
                torch.save([
                    self.obs_norm.mean, self.obs_norm.std, self.goal_norm.mean,
                    self.goal_norm.std,
                    self.actor_net.state_dict()
                ], self.model_path + '/model.pt')
            success_rate_history.append(success_rate)
        success_rate_history = np.array(success_rate_history)
        np.savetxt('Plot_Data/Pen_HER.txt',
                   success_rate_history,
                   fmt='%f',
                   delimiter=',')

    ###############################
    # Name: _pre_process_inputs
    # Function: process the inputs for the actor network
    # Comment:
    ###############################
    def _pre_process_inputs(self, obs, goal):
        obs_norm = self.obs_norm.normalize(obs)
        goal_norm = self.goal_norm.normalize(goal)
        # concatenate the stuffs
        inputs = np.concatenate([obs_norm, goal_norm])
        inputs = torch.tensor(inputs, dtype=torch.float32).unsqueeze(0)
        if self.args.cuda:
            inputs = inputs.cuda()

        return inputs

    def _choose_action(self, policy_predictions):
        action = policy_predictions.cpu().numpy().squeeze()
        # create the noise
        action += self.args.noise_epsilon * self.env_params[
            'action_max'] * np.random.randn(*action.shape)
        action = np.clip(action, -self.env_params['action_max'],
                         self.env_params['action_max'])
        random_action = np.random.uniform(low=-self.env_params['action_max'],
                                          high=self.env_params['action_max'],
                                          size=self.env_params['action'])
        # decide random or not
        action += np.random.binomial(1, self.args.random_epsilon,
                                     1)[0] * (random_action - action)

        return action

    def _update_normalizer(self, experience_buff):
        exp_obs, exp_a_goal, exp_d_goal, exp_actions = experience_buff
        exp_obs_next = exp_obs[:, 1:, :]
        exp_a_goal_next = exp_a_goal[:, 1:, :]
        num_exps = exp_actions.shape[1]
        buffer_temp = {
            'obs': exp_obs,
            'a_goal': exp_a_goal,
            'd_goal': exp_d_goal,
            'actions': exp_actions,
            'obs_next': exp_obs_next,
            'a_goal_next': exp_a_goal_next,
        }
        transitions = self.her_sample.her_sample_transitions(
            buffer_temp, num_exps)
        obs, d_goal = transitions['obs'], transitions['d_goal']
        transitions['obs'], transitions['d_goal'] = self._pre_process_obs_goal(
            obs, d_goal)
        # update
        self.obs_norm.update(transitions['obs'])
        self.goal_norm.update(transitions['d_goal'])
        # recompute the stats
        self.obs_norm.recompute_stats()
        self.goal_norm.recompute_stats()

    ###############################
    # Name: _pre_process_obs_goal
    # Function: process the observation and desired goal for the normalization
    # Comment:
    ###############################
    def _pre_process_obs_goal(self, obs, goal):
        obs_proceed = np.clip(obs, -self.args.clip_obs, self.args.clip_obs)
        goal_proceed = np.clip(goal, -self.args.clip_obs, self.args.clip_obs)

        return obs_proceed, goal_proceed

    ###############################
    # Name: _soft_update_target_network
    # Function: soft update the parameters of the target network
    # Comment:
    ###############################
    def _soft_update_target_network(self, target_net, eval_net):
        for target_param, param in zip(target_net.parameters(),
                                       eval_net.parameters()):
            target_param.data.copy_((1 - self.args.avg_coeff) * param.data +
                                    self.args.avg_coeff * target_param.data)

    ###############################
    # Name: _update_network
    # Function: train the parameters of the actor network and critic network
    # Comment:
    ###############################
    def _update_network(self):
        # sample the transitions
        transitions = self.exp_buffer.sample(self.args.batch_size)
        obs, obs_next, d_goal = transitions['obs'], transitions[
            'obs_next'], transitions['d_goal']
        transitions['obs'], transitions['d_goal'] = self._pre_process_obs_goal(
            obs, d_goal)
        transitions['obs_next'], transitions[
            'd_goal_next'] = self._pre_process_obs_goal(obs_next, d_goal)
        observation_norm = self.obs_norm.normalize(transitions['obs'])
        d_goal_norm = self.goal_norm.normalize(transitions['d_goal'])
        inputs_norm = np.concatenate([observation_norm, d_goal_norm], axis=1)

        observation_next_norm = self.obs_norm.normalize(
            transitions['obs_next'])
        d_goal_next_norm = self.goal_norm.normalize(transitions['d_goal_next'])
        inputs_next_norm = np.concatenate(
            [observation_next_norm, d_goal_next_norm], axis=1)

        inputs_norm_tensor = torch.tensor(inputs_norm, dtype=torch.float32)
        inputs_next_norm_tensor = torch.tensor(inputs_next_norm,
                                               dtype=torch.float32)
        actions_tensor = torch.tensor(transitions['actions'],
                                      dtype=torch.float32)
        reward_tensor = torch.tensor(transitions['reward'],
                                     dtype=torch.float32)

        if self.args.cuda:
            inputs_norm_tensor = inputs_norm_tensor.cuda()
            inputs_next_norm_tensor = inputs_next_norm_tensor.cuda()
            actions_tensor = actions_tensor.cuda()
            reward_tensor = reward_tensor.cuda()

        # calculate the target Q value function
        with torch.no_grad():
            actions_next = self.actor_target_net(inputs_next_norm_tensor)
            q_next_value = self.critic_target_net(inputs_next_norm_tensor,
                                                  actions_next)
            q_next_value = q_next_value.detach()
            target_q_value = reward_tensor + self.args.gamma * q_next_value
            target_q_value = target_q_value.detach()
            clip_return = 1 / (1 - self.args.gamma)  # ??????????????
            target_q_value = torch.clamp(target_q_value, -clip_return, 0)

        # calculate the loss
        real_q_value = self.critic_net(inputs_norm_tensor, actions_tensor)
        critic_loss = (target_q_value - real_q_value).pow(2).mean()

        # the actor loss
        actions_real = self.actor_net(inputs_norm_tensor)
        actor_loss = -self.critic_net(inputs_norm_tensor, actions_real).mean()
        actor_loss += self.args.action_l2 * (
            actions_real / self.env_params['action_max']).pow(2).mean()

        # start to train the network
        self.actor_optimizer.zero_grad()
        actor_loss.backward()
        sync_grads(self.actor_net)
        self.actor_optimizer.step()

        self.critic_optimizer.zero_grad()
        critic_loss.backward()
        sync_grads(self.critic_net)
        self.critic_optimizer.step()

    ###############################
    # Name: _evaluate_agent
    # Function: evaluate the agent
    # Comment:
    ###############################
    def _evaluate_agent(self):
        all_success_rate = []
        for _ in range(self.args.n_eval):
            per_success_rate = []
            observations = self.env.reset()
            obs = observations['observation']
            d_goal = observations['desired_goal']
            for _ in range(self.env_params['max_timesteps']):
                with torch.no_grad():
                    input_tensor = self._pre_process_inputs(obs, d_goal)
                    policy_predictions = self.actor_net(input_tensor)
                    action = policy_predictions.detach().cpu().numpy().squeeze(
                    )
                observations_next, _, _, info = self.env.step(action)
                obs = observations_next['observation']
                d_goal = observations_next['desired_goal']
                per_success_rate.append(info['is_success'])
            all_success_rate.append(per_success_rate)
        all_success_rate = np.array(all_success_rate)
        local_success_rate = np.mean(all_success_rate[:, -1])
        global_success_rate = MPI.COMM_WORLD.allreduce(local_success_rate,
                                                       op=MPI.SUM)

        return global_success_rate / MPI.COMM_WORLD.Get_size()
示例#2
0
        print(
            f"\nGeneration: {generation},  Participate Rl-agent as last individual"
            if (generation %
                args.RtoE) == 0 else f"\nGeneration: {generation},")
        print(
            f"{steps}\n{np.round(scores, 0)}  STD:{np.std(scores).round() / 2}\n"
            f"Avg(Q-filter):{np.mean(scores[1:num_high]).round()}, Avg(random):{np.mean(scores[-num_low:-1]).round()}"
        )
        print(f"{q_values}\n{res}\n" if len(q_values) > 0 else f"{res}\n")

        ############################### ES Update #################################
        CEM_start = time.time()
        es_agent.update(params, scores)
        CEM_time += time.time() - CEM_start
        ##### Check Q-vale and distance between best and rl before the update #####
        stateOut, _, _, _, _ = replay_buffer.sample(512)
        actor.set_params(es_agent.elite_param)

        predistOut = copy.deepcopy(
            ((rl_agent.actor(stateOut) - actor(stateOut))**2).mean().item())
        preQ = copy.deepcopy(
            rl_agent.critic.Q1(stateOut,
                               rl_agent.actor(stateOut)).mean().item())
        print(
            f"Before the learning, Distance:{predistOut}, Q-value:{preQ}, and G_beta:{rl_agent.guided_beta}"
        )

        ######################### Check Guided-learning ###########################
        guided_learning = False
        if (generation % args.RtoE) == 0:
            if args.guided and (scores[-1] <
class DDPG():
    """Reinforcement Learning agent that learns using DDPG."""
    def __init__(self, task):
        self.task = task
        self.state_size = task.state_size
        self.action_size = task.action_size
        self.action_low = task.action_low
        self.action_high = task.action_high
        
        # Actor (Policy) Model
        self.actor_local = Actor(self.state_size, self.action_size, self.action_low, self.action_high)
        self.actor_target = Actor(self.state_size, self.action_size, self.action_low, self.action_high)

        # Critic (Value) Model
        self.critic_local = Critic(self.state_size, self.action_size)
        self.critic_target = Critic(self.state_size, self.action_size)

        # Initialize target model parameters with local model parameters
        self.critic_target.model.set_weights(self.critic_local.model.get_weights())
        self.actor_target.model.set_weights(self.actor_local.model.get_weights())

        # Noise process
        self.exploration_mu = 0
        self.exploration_theta = 0.15
        self.exploration_sigma = 0.2
        self.noise = OUNoise(self.action_size, self.exploration_mu, self.exploration_theta, self.exploration_sigma)

        # Replay memory
        self.buffer_size = 100000
        self.batch_size = 64
        self.memory = ReplayBuffer(self.buffer_size, self.batch_size)

        # Algorithm parameters
        self.gamma = 0.99  # discount factor
        self.tau = 0.01  # for soft update of target parameters
        
        # Score tracker and learning parameters
        #self.count = 0
        #self.score = 0
        #self.total_reward = 0
        #self.best_w = None
        #self.best_score = -np.inf
        #self.noise_scale = 0.1


    def reset_episode(self):
        #self.count = 0
        #self.score = 0
        #self.total_reward = 0
        self.noise.reset()
        state = self.task.reset()
        self.last_state = state
        return state

    def step(self, action, reward, next_state, done):
        # Save experience / reward
        self.memory.add(self.last_state, action, reward, next_state, done)
        #self.count += 1
        #self.total_reward += reward

        # Learn, if enough samples are available in memory
        if len(self.memory) > self.batch_size:
            experiences = self.memory.sample()
            self.learn(experiences)

        # Roll over last state and action
        self.last_state = next_state

    def act(self, state):
        """Returns actions for given state(s) as per current policy."""
        state = np.reshape(state, [-1, self.state_size])
        action = self.actor_local.model.predict(state)[0]
        self.noise.sample()
        return list(action + self.noise.sample())  # add some noise for exploration

    def learn(self, experiences):
       
        
        """Update policy and value parameters using given batch of experience tuples."""
        # Convert experience tuples to separate arrays for each element (states, actions, rewards, etc.)
        states = np.vstack([e.state for e in experiences if e is not None])
        actions = np.array([e.action for e in experiences if e is not None]).astype(np.float32).reshape(-1, self.action_size)
        rewards = np.array([e.reward for e in experiences if e is not None]).astype(np.float32).reshape(-1, 1)
        dones = np.array([e.done for e in experiences if e is not None]).astype(np.uint8).reshape(-1, 1)
        next_states = np.vstack([e.next_state for e in experiences if e is not None])

        # Get predicted next-state actions and Q values from target models
        #     Q_targets_next = critic_target(next_state, actor_target(next_state))
        actions_next = self.actor_target.model.predict_on_batch(next_states)
        Q_targets_next = self.critic_target.model.predict_on_batch([next_states, actions_next])

        # Compute Q targets for current states and train critic model (local)
        Q_targets = rewards + self.gamma * Q_targets_next * (1 - dones)
        self.critic_local.model.train_on_batch(x=[states, actions], y=Q_targets)

        # Train actor model (local)
        action_gradients = np.reshape(self.critic_local.get_action_gradients([states, actions, 0]), (-1, self.action_size))
        self.actor_local.train_fn([states, action_gradients, 1])  # custom training function

        # Soft-update target models
        self.soft_update(self.critic_local.model, self.critic_target.model)
        self.soft_update(self.actor_local.model, self.actor_target.model)   
        

    def soft_update(self, local_model, target_model):
        """Soft update model parameters."""
        local_weights = np.array(local_model.get_weights())
        target_weights = np.array(target_model.get_weights())

        assert len(local_weights) == len(target_weights), "Local and target model parameters must have the same size"

        new_weights = self.tau * local_weights + (1 - self.tau) * target_weights
        target_model.set_weights(new_weights)