示例#1
0
def FinalLines(txtpath,kmlsavepath,txtfile):
    """
    批量处理每辆车的完成路网匹配
    :param txtpath: txt文件路径,txt文件是最终确定的轨迹点所属路段的存储文件
    :param kmlsavepath: kml文件的保存路径
    txtfile  kml路线对应的txt文档
    :return:
    """
    if not os.path.isdir(kmlsavepath):
        os.mkdir(kmlsavepath)
    with open(txtpath,'r') as file:
        lines = file.readlines()
        linesnum = len(lines)
        finalconnways = []  #最终能走通的路线
        count = 0
        for i in range(linesnum):
            if lines[i].strip("\n")=="New_Road":
                continue
            waylists = GetAllLines(eval(lines[i].strip("\n")))
            if len(waylists)>=3:
                if MapNavigation.JudgeLines(waylists):
                    finalconnways.append(waylists)
            elif len(waylists)==2:
                if MapNavigation.JudgeTwoWay(waylists[0],waylists[1]):
                    finalconnways.append(waylists)
            else:pass
            #print(finalconnways)
        finalconnways = Common_Functions.Double_layer_list(finalconnways)
        file = open(txtfile,'a')
        for sub in finalconnways:
            file.write(str(sub)+"\n")
            count += 1
            nodes = Fill_coordinate_By_Routes(sub)
            Common_Functions.list2kml(nodes, str(count),kmlsavepath)
        file.close()
def JudgeTwoWay(wayid1,wayid2):
    """
    判断两个相邻有交点路段是否能够互通,即从way1 是否能到达way2
    注意:此部分只判断有交点的两个路段  没有交点的两个路段会直接判断为不能互通
    思路:
    1、无交点,判定为不通,两个路段ID相同,判定为相通
    2、
    :param wayid1:
    :param wayid2:
    :return:
    """
    if wayid1==wayid2:
        Common_Functions.SaveRoutesConn("connects", wayid1, wayid2, 1)
        return True
    node_id = TwoWay_intersection(wayid1, wayid2)  # 两条路段交点
    if not node_id:     #两个路段没有交点
        return False
    try:
        wayid1_oneway_flag = Getway_Direction(wayid1)  # 标记wayid1是否为单向
        wayid2_oneway_flag = Getway_Direction(wayid2)  # 标记wayid2是否为单向
        wayslist1 = Get_way_NodeID(wayid1)
        wayslist2 = Get_way_NodeID(wayid2)  # 示例:[320524866, 2207731964, 320524867]
        index = wayslist2.index(node_id[0][0])  # node_id[0][0]为取出交点 node_id为嵌套元组
        if wayid1_oneway_flag == 0 and wayid2_oneway_flag == 0:
            # 两个路段均为双向
            Common_Functions.SaveRoutesConn("connects", wayid1, wayid2, 1)
            return True
        elif wayid1_oneway_flag == 1 and wayid2_oneway_flag == 0:  # wayid1 为单向 wayid2 为双向
            # wayid1为单向 wayid2为双向
            if wayslist1.index(node_id[0][0]) == 0:  # 交点为wayid1的第一个点
                Common_Functions.SaveRoutesConn("connects", wayid1, wayid2, 0)
                return False
            else:
                Common_Functions.SaveRoutesConn("connects", wayid1, wayid2, 1)
                return True
        elif wayid1_oneway_flag == 0 and wayid2_oneway_flag == 1:  # wayid1 为双向 wayid2 为单向
            if index == len(wayslist2) - 1:  # 交点是way2的最后一个点,那么即使way1 way2有交点,则way1也是无法到达way2的
                Common_Functions.SaveRoutesConn("connects", wayid1, wayid2, 0)
                return False
            else:
                Common_Functions.SaveRoutesConn("connects", wayid1, wayid2, 1)
                return True

        else:
            # 两个路段均为单向
            if index == len(wayslist2) - 1:  # 交点是way2的最后一个点,那么即使way1 way2有交点,则way1也是无法到达way2的
                Common_Functions.SaveRoutesConn("connects", wayid1, wayid2, 0)
                return False
            elif wayslist1.index(node_id[0][0]) == 0 and wayslist2.index(node_id[0][0]) == 0:  # 交点同时是way1 way2的第一个点
                Common_Functions.SaveRoutesConn("connects", wayid1, wayid2, 1)
                return True
            elif wayslist1.index(node_id[0][0]) == 0:  # 交点是way1的第一个点
                Common_Functions.SaveRoutesConn("connects", wayid1, wayid2, 0)
                return False
            else:
                Common_Functions.SaveRoutesConn("connects", wayid1, wayid2, 1)
                return True
    except:
        return False
示例#3
0
def FindPointCandidateWay_Grid(csvfilepath, candidatewaypath,
                               candidatewayname):
    """
    :param csvfilepath: csv文件路径 例:H:\TrunksArea\\334e4763-f125-425f-ae42-8028245764fe.csv"
    :param candidatewaypath:  轨迹点候选路段保存路径
    :param candidatewayname: 候选路段保存的文件名

    :return:
    """
    if not os.path.isdir(candidatewaypath):
        os.mkdir(candidatewaypath)
    # 读时间 经纬度 网格编号
    #df = pd.read_csv("H:\GPS_Data\Road_Network\BYQBridge\TrunksArea\\334e4763-f125-425f-ae42-8028245764fe.csv",header=None, usecols=[1, 2, 3, 4, 5])
    df = pd.read_csv(csvfilepath, header=None, usecols=[1, 2, 3, 4, 5])
    points_num = df.shape[0]  # 坐标数量
    pd.set_option('display.max_columns', None)
    pd.set_option('display.max_rows', None)
    # print(df.iloc[:,1:4])
    drop_list = []  # 要删除的索引列表
    for row in range(1, points_num):
        if row == points_num:
            break
        points_dis = Common_Functions.haversine(df.iloc[row, 1], df.iloc[row,
                                                                         2],
                                                df.iloc[row - 1, 1],
                                                df.iloc[row - 1,
                                                        2])  # 相邻坐标点之间的距离
        if points_dis < 0.01:  # 距离小于10米
            drop_list.append(row)
    newdf = df.drop(drop_list)  # 删除相邻点在10米之内的点
    newdf = newdf.reset_index(drop=True)
    txtname = candidatewayname + ".txt"
    file = open(os.path.join(candidatewaypath, txtname), 'a')

    print("本轨迹段共查找坐标点数为:{}".format(newdf.shape[0]))
    for row in range(newdf.shape[0]):
        dic = {}
        #candidatacode = BigGridCode.Neighbor(newdf.iloc[row, 1], newdf.iloc[row, 2])  # 查找附近八个区域
        # for subcode in candidatacode:
        #     if subcode:
        #         waysets = list(Common_Functions.GetWay_ByGridCode(subcode[1]))
        #         for subway in waysets:
        #             dic[subway[0]] = subcode[1]
        pointCode = BigGridCode.Encode(newdf.iloc[row, 1], newdf.iloc[row, 2])
        waysets = list(Common_Functions.GetWay_ByGridCode(pointCode[1]))
        if waysets:
            for subway in waysets:
                dic[subway[0]] = pointCode[1]

        #print(f"{newdf.iloc[row, 1]},{newdf.iloc[row, 2]}CandidateWay>>>{str(dic)}")
        if dic:
            file.write("PointID-" + str(row + 1) + "CandidateWay>>>" +
                       str(dic) + "\n")
    file.close()
示例#4
0
def InsertGridTable(waylistpath, dbname, tablename):
    connection = pymysql.connect(host='localhost',
                                 user='******',
                                 passwd='123456',
                                 charset='utf8')
    cursor = connection.cursor()
    cursor.execute("use {};".format(dbname))
    print("ways信息开始导入数据库...")
    with open(waylistpath, 'r') as file:
        dic = json.loads(file.read())
        with tqdm(total=len(dic)) as pbar:
            for key in dic.keys():
                Isflag = 1  #标记该路段是否有轨迹点没有坐标
                completeLineCode = []  #存储一条线路的完整编号
                for num in range(1, len(dic[key])):  # sequence代表每条路中node的排序号

                    coor1 = MapNavigation.Get_Coordinate(dic[key][num -
                                                                  1])  #有的点没有坐标
                    coor2 = MapNavigation.Get_Coordinate(dic[key][num])
                    if coor1 and coor2:
                        #print(coor1[0],coor1[1],coor2[0],coor2[1])
                        temcodelist = BigGridCode.GetGridCodes(
                            coor1[0], coor1[1], coor2[0], coor2[1])
                        completeLineCode.extend(temcodelist)
                    else:
                        Isflag = 0
                        continue
                if Isflag == 1:
                    #`FirstLevelTable`(`WayID`, `GridCode`, `SequenceID`)
                    sequenceid = 0
                    Common_Functions.del_adjacent(completeLineCode)
                    # li = list(set(completeLineCode))
                    # li.sort(key=completeLineCode.index)
                    #with open("H:\GPS_Data\Road_Network\Beijing\\BJGrid.txt",'a') as file:
                    #file.write(key +">>>" + str(completeLineCode)+"\n")
                    for sub in completeLineCode:
                        sequenceid += 1
                        sql_insert = 'insert into {}(WayID,GridCode,SequenceID) values({},{},{});'.format(
                            tablename, key, repr(sub[1]), sequenceid)
                        try:
                            cursor.execute(sql_insert)  # 执行sql语句
                            connection.commit()  # 提交
                        except Exception as e:
                            print(e)
                            connection.rollback()
                            cursor.close()
                else:
                    print(f"未导入:{key}")
                    pass
                pbar.update(1)
    connection.close()
示例#5
0
def AllwayConn(waysjsonpath):
    """
    对左右的路段进行连通性判断
    permutations(Allwayset,2) 二二组合,(A,B,C)->AB AC BA BC CA CB
    :param waysjsonpath:所有路段json文件路径
    :return:
    """
    AllwaysLists = []
    with open(waysjsonpath, 'r') as file:
        dic = json.loads(file.read())
    for key in dic.keys():
        AllwaysLists.append(key)
    Allwaysset = set(AllwaysLists)
    for twowaytuple in permutations(Allwaysset, 2):
        print(f"正在查看路段:{twowaytuple[0]}与路段:{twowaytuple[1]}的连通性......")
        connectroute = Common_Functions.InquireConn(twowaytuple[0],
                                                    twowaytuple[1],
                                                    "connects")  # 先查表
        # connectroute = -1
        if connectroute != 0 and connectroute != 1:  # 表中没有记录 再用简易导航
            connectroute = MapNavigation.waytoway(twowaytuple[0],
                                                  twowaytuple[1])  # 为列表
            if connectroute:
                print(
                    f"路段{twowaytuple[0]}---->{twowaytuple[1]}的路线:{connectroute}"
                )
            else:
                print(f"路段{twowaytuple[0]}不能到达路段{twowaytuple[1]}")
        else:
            print("数据库中已存在,跳过")
示例#6
0
def AllwayConn(waysjsonpath):
    """
    对左右的路段进行连通性判断
    permutations(Allwayset,2) 二二组合,(A,B,C)->AB AC BA BC CA CB
    :param waysjsonpath:所有路段json文件路径
    :return:
    """
    AllwaysLists = []
    with open(waysjsonpath, 'r') as file:
        dic = json.loads(file.read())
    for key in dic.keys():
        AllwaysLists.append(key)
    Allwaysset = set(AllwaysLists)
    for twowaytuple in permutations(Allwaysset, 2):
        try:
            print(f"正在查看路段:{twowaytuple[0]}与路段:{twowaytuple[1]}的连通性......")
            way1_x, way1_y = Getway_startendnode_coordi(
                twowaytuple[0])  # 路段1的起点坐标
            way2_x, way2_y = Getway_startendnode_coordi(
                twowaytuple[1])  # 路段2的起始坐标
            print(way1_x, way1_y, way2_x, way2_y)
            if way1_x != 0 and way1_y != 0 and way2_x != 0 and way2_y != 0:
                waydis = Common_Functions.haversine(way1_x, way1_y, way2_x,
                                                    way2_y)
                print(waydis)
                if waydis < 3:
                    connectroute = Common_Functions.InquireConn(
                        twowaytuple[0], twowaytuple[1], "connects")  # 先查表
                    # connectroute = -1
                    if connectroute != 0 and connectroute != 1:  # 表中没有记录 再用简易导航
                        connectroute = MapNavigation.waytoway(
                            twowaytuple[0], twowaytuple[1])  # 为列表
                        if connectroute:
                            print(
                                f"路段{twowaytuple[0]}---->{twowaytuple[1]}的路线:{connectroute}"
                            )
                        else:
                            print(f"路段{twowaytuple[0]}不能到达路段{twowaytuple[1]}")
                    else:
                        print("数据库中已存在,跳过")
                else:
                    pass
        except Exception as e:
            print(e)
示例#7
0
def Fill_coordinate_By_Routes(waylists:list):
    """
    根据最终的waylist求出路网坐标点   传入的列表是要是已经连通好的路线
    :param waylists 路线中路段列表,以车辆"003b5b7e-e72c-4fc5-ac6d-bcc248ac7a16"经过北野场桥为例
    [437527026, 466289459, 466289461, 466289460, 606768166, 152616724]
    :return:
    """
    AllNodeLists = []  #道路坐标列表
    AllNodeIDLists = []  #道路坐标点编号列表
    First_intersection = 0 #第一个交点
    if len(waylists)==0:
        return None
    if len(waylists) == 1:
        nodelist = Common_Functions.Get_way_Nodes(waylists[0])
        AllNodeIDLists.extend(nodelist[:])
        for node in AllNodeIDLists:
            node_coordinate = Common_Functions.Get_Coordinate(node)
            AllNodeLists.append(node_coordinate)
        return AllNodeLists
    for index in range(len(waylists)):
        if index == len(waylists)-1:
            nodelist = Common_Functions.Get_way_Nodes(waylists[index])
            First_intersection_index = nodelist.index(First_intersection)
            AllNodeIDLists.extend(nodelist[First_intersection_index:])
            break
        else:
            Second_intersection = MapNavigation.TwoWay_intersection(waylists[index],waylists[index+1])[0][0]  #两条路交点,TwoWay_intersection返回的为元组,如((1213),)
            nodelist = Common_Functions.Get_way_Nodes(waylists[index])  #获得该路段的所有坐标点
            if index==0:
                First_intersection_index = 0   #路段第一个交点在路段中的索引号,此时First_intersection_index还是None
            else:
                First_intersection_index = nodelist.index(First_intersection)
            Second_intersection_index = nodelist.index(Second_intersection) #第二个坐标交点
            AllNodeIDLists.extend(nodelist[First_intersection_index:Second_intersection_index+1])
            First_intersection = Second_intersection

    for node in AllNodeIDLists:
        node_coordinate = Common_Functions.Get_Coordinate(node)
        AllNodeLists.append(node_coordinate)
    return AllNodeLists
示例#8
0
def Batchprocess(sourcecsvpath,splitsavepath,candidatewaypath):
    if not os.path.isdir(splitsavepath):
        os.mkdir(splitsavepath)
    sourcecsvfilelist = Common_Functions.findcsvpath(sourcecsvpath)   #找出所有的网格化之后的单车文件路径
    # for singlefile in sourcecsvfilelist:
    #     RoadMatching.TrajectorySplit(singlefile,splitsavepath)    #完整轨迹分段
    folderlist = os.listdir(splitsavepath)    #文件夹列表
    print(folderlist)
    #dicflag = {00000000:"BreakPoint"}
    for folder in folderlist:
        tempath = os.path.join(splitsavepath,folder)
        if os.path.isdir(tempath):
            print(f"正在处理车辆{folder}")
            if folder =="10706a7b-3d56-4551-9a09-debda7d2c032":
                continue
            partcsvlists = Common_Functions.findcsvpath(tempath)  #每个文件夹中的分段轨迹csv文件
            for index in range(len(partcsvlists)):
                RoadMatching.FindPointCandidateWays(partcsvlists[index],candidatewaypath,folder)
                txtname = folder + ".txt"
                if index!=len(partcsvlists)-1:
                    with open(os.path.join(candidatewaypath, txtname), 'a') as file:
                        file.write("PointIDCandidateWay>>>BreakPoint\n")
        else:
            pass
示例#9
0
def BatchSelectLines(Candidatewaypath,savepath):
    """
    批量选出最终匹配的轨迹
    :param Candidatewaypath: 所有候选路线的txt路径
    :param savepath: kml保存路径
    :return:
    """
    txtlist = Common_Functions.findtxtpath(Candidatewaypath)
    for singletxt in txtlist:
        print(singletxt)
        (tempath, tempfilename) = os.path.split(singletxt)  # tempfilename为txt文件名(包含后缀)
        (trunkname, extension) = os.path.splitext(tempfilename)  # filename 为传入的txt文件名 extension为后缀
        kmlsavepath = os.path.join(savepath,trunkname)
        txtkmllinename = trunkname +".txt"
        if not os.path.isdir(kmlsavepath):
            os.mkdir(kmlsavepath)
        FinalLines(singletxt,kmlsavepath,os.path.join(kmlsavepath,txtkmllinename))
示例#10
0
        file.close()
def BatchSelectLines(Candidatewaypath,savepath):
    """
    批量选出最终匹配的轨迹
    :param Candidatewaypath: 所有候选路线的txt路径
    :param savepath: kml保存路径
    :return:
    """
    txtlist = Common_Functions.findtxtpath(Candidatewaypath)
    for singletxt in txtlist:
        print(singletxt)
        (tempath, tempfilename) = os.path.split(singletxt)  # tempfilename为txt文件名(包含后缀)
        (trunkname, extension) = os.path.splitext(tempfilename)  # filename 为传入的txt文件名 extension为后缀
        kmlsavepath = os.path.join(savepath,trunkname)
        txtkmllinename = trunkname +".txt"
        if not os.path.isdir(kmlsavepath):
            os.mkdir(kmlsavepath)
        FinalLines(singletxt,kmlsavepath,os.path.join(kmlsavepath,txtkmllinename))

#FinalLines("H:\GPS_Data\Road_Network\BYQBridge\FinalRoutes\\10706a7b-3d56-4551-9a09-debda7d2c032.txt","H:\GPS_Data\Road_Network\BYQBridge\KML\PartTrunksAreaKml")
#BatchSelectLines("H:\GPS_Data\Road_Network\BYQBridge\FinalRoutes\Test","H:\GPS_Data\Road_Network\BYQBridge\KML\PartTrunksAreaKml\Batch")
# FinalLines("H:\GPS_Data\Road_Network\BYQBridge\FinalRoutes\FullTrack\\10706a7b-3d56-4551-9a09-debda7d2c032.txt",
#             "H:\GPS_Data\Road_Network\BYQBridge\KML\PartTrunksAreaKml\FullTrack\\10706a7b-3d56-4551-9a09-debda7d2c032",
#             "H:\GPS_Data\Road_Network\BYQBridge\KML\PartTrunksAreaKml\FullTrack\\10706a7b-3d56-4551-9a09-debda7d2c032\\10706a7b.txt")


Common_Functions.list2kml(Fill_coordinate_By_Routes([242945739, 242945750, 242945771, 47574802, 680002283, 47574807]),
                          "se","H:\GPS_Data\Road_Network\BYQBridge\KML\PartTrunksAreaKml\Grid\BYC")


#print(GetAllLines([318909305, 317886767, 407991264, 51997674, 317916355, 391813868, 29135445, 317916344, 29135795, 391813830, 210697668, 317916290, 29135960, 47574189, 242945770, 47574191, 229521327, 258296019, 317889645, 317913828, 29136270, 606768167, 606768159, 508147677, 508312926, 466839062, 466839044, 466839045, 332203310, 332203325, 398538985]))
示例#11
0
def SelectFinalRoutes(candidatewaypath, savefinalroutespath):
    """
    本函数与SelectFinalRoute功能相同,只是本函数处理完整的轨迹时,如果大于50.会重新开始计算最大连通性
    根据坐标点的候选路段选出路网的匹配路线
    保存格式为:车辆名:路线(如果不确定,可能为多条),车辆名为txt文件名
    :param candidatewaypath:  坐标点候选路段的txt文件路径,如H:\\CandidateWay\\NewStrategy\\334e4763-f125-425f-ae42-8028245764fe.txt
    :param savefinalroutespath: 最终路线保存路径
    :return:
    """
    #file = open("H:\GPS_Data\Road_Network\BYQBridge\FinalRoutes\\334e4763-f125-425f-ae42-8028245764fe.txt", 'a')
    max_connect = 0  #记录计算最大连通的轨迹点数
    (tempath, tempfilename) = os.path.split(
        candidatewaypath)  # tempfilename为txt文件名(包含后缀)
    (trunkname, extension) = os.path.splitext(
        tempfilename)  # filename 为传入的csv文件名 extension为后缀
    savetxtfilename = trunkname + '.txt'
    Resetflag = 0  #标记最终路段是否重新开始计算
    file = open(os.path.join(savefinalroutespath, savetxtfilename), 'a')
    with open(candidatewaypath) as candidatewayfile:
        filelines = candidatewayfile.readlines()
        linesnum = len(filelines)
        finalline = []  #存储最终路线,可能为多条,随着坐标点的迭代,会变化,直到处理完最有一个坐标点
        for key in eval(filelines[0].strip('\n').split(">>>")[-1]).keys():
            finalline.append([key])
        #print(finalline)
        # 遍历每个坐标点的候选路段
        print("需要处理坐标数为:{}".format(linesnum))
        for lineindex in range(1, linesnum):
            print(f"正在处理第{lineindex+1}个坐标")
            if filelines[lineindex].strip('\n').split(
                    ">>>")[-1] == "BreakPoint":  #轨迹分段,分开计算
                file.write("New_Road\n")
                for sub in finalline:
                    file.write(str(sub) + "\n")
                    file.flush()
                Resetflag = 1  #标记从下一个点要重新开始匹配轨迹了
                max_connect = 0
                continue
            if max_connect == 100:
                file.write("New_Road\n")
                for sub in finalline:
                    file.write(str(sub) + "\n")
                    file.flush()
                Resetflag = 1  #标记从下一个点要重新开始匹配轨迹了
                max_connect = 0
                continue
            if Resetflag == 1:
                finalline.clear()
                for key in eval(filelines[lineindex].strip('\n').split(">>>")
                                [-1]).keys():
                    finalline.append([key])
                Resetflag = 0
                continue
            templine = []  #存储临时路线
            #print("处理坐标{}:{}".format(lineindex,eval(filelines[lineindex].strip('\n').split(">>>")[-1])))
            #print("处理路段{}".format(eval(filelines[lineindex].strip('\n').split(">>>")[-1])))
            connect_next_flag = 0  #记录下一步是否能有能走通的路段
            for subline in finalline:  #遍历每一条的候选路线
                for key in eval(filelines[lineindex].strip('\n').split(">>>")
                                [-1]).keys():  #遍历每个轨迹点的候选路段
                    #此代码块只加入key,不加入完整路线
                    print("路段:{}匹配key:{}".format(subline[-1], key))
                    # 只需要查看subline的最后一个路段与路段key是否连通即可,因为subline的连通性是通过测试的
                    connectroute = Common_Functions.InquireConn(
                        subline[-1], key, "connects")  #先查表
                    #connectroute = -1
                    if connectroute != 0 and connectroute != 1:  #表中没有记录 再用简易导航
                        connectroute = MapNavigation.waytoway(
                            subline[-1], key)  # 为列表
                    if connectroute:
                        connect_next_flag = 1
                        temsubline = copy.deepcopy(subline)
                        temsubline.append(key)  # 只加入轨迹点所属路段,而不加入这两个路段走通的路线
                        templine.append(temsubline)
                    else:
                        # 此路线不连通,舍弃当前路段key
                        pass
                    """
                    #此代码块是加入完整路线
                    #connectroute = Common_Functions.InquireConn(subline[-1], key,"connects")   #先查表
                    #connectroute = -1
                    connectroute = MapNavigation.Nodirectionwaytoway(subline[-1], key)  # 为列表
                    if subline[-1] == key:
                        temsubline = copy.deepcopy(subline)
                        templine.append(temsubline)
                    #elif connectroute !=0 and connectroute!= 1:   #表中没有记录 再用简易导航
                        #connectroute = MapNavigation.Nodirectionwaytoway(subline[-1], key)  # 为列表
                    elif connectroute:
                        #路段可连通
                        temsubline = copy.deepcopy(subline)
                        temsubline.extend(connectroute[1:])   #将走通的路线加入到子路线,扩展当前路线
                        templine.append(temsubline)
                    else:pass
                    """
            if connect_next_flag == 0:  #所有的候选路线与当前轨迹点的候选路段均不能相通,跳过此轨迹点
                pass
            else:
                finalline.clear()
                # print(templine)
                finalline = Common_Functions.DoubleDel(templine)  # 去相邻重复 再去重
                finalline = Common_Functions.Main_Auxiliary_road(
                    finalline)  # 去除头尾路段一样的候选路线,路线只有一个路段 不会处理
                # print(finalline)
                #finalline = Common_Functions.Start_End(finalline)  # 对于[wayid1,wayid2,wayid3] [wayid1,wayid4,wayid5,wayid3]  去除路段多的,如果包含路段数量一致 暂不处理
                finalline = Common_Functions.Sequential_subset(
                    finalline)  # 最后去路线(至少两个及以上的其他路线是其前缀)
                max_connect += 1
        file.write("New_Road\n")
        for sub in finalline:
            file.write(str(sub) + "\n")
            file.flush()
        file.close()
示例#12
0
def SelectFinalRoutes(candidatewaypath, savefinalroutespath):
    """
    本函数与SelectFinalRoute功能相同,只是本函数处理完整的轨迹时,如果大于50.会重新开始计算最大连通性
    根据坐标点的候选路段选出路网的匹配路线
    保存格式为:车辆名:路线(如果不确定,可能为多条),车辆名为txt文件名
    :param candidatewaypath:  坐标点候选路段的txt文件路径,如H:\\CandidateWay\\NewStrategy\\334e4763-f125-425f-ae42-8028245764fe.txt
    :param savefinalroutespath: 最终路线保存路径
    :return:
    """
    #file = open("H:\GPS_Data\Road_Network\BYQBridge\FinalRoutes\\334e4763-f125-425f-ae42-8028245764fe.txt", 'a')
    max_connect = 0
    (tempath, tempfilename) = os.path.split(
        candidatewaypath)  # tempfilename为txt文件名(包含后缀)
    (trunkname, extension) = os.path.splitext(
        tempfilename)  # filename 为传入的csv文件名 extension为后缀
    savetxtfilename = trunkname + '.txt'
    file = open(os.path.join(savefinalroutespath, savetxtfilename), 'a')
    with open(candidatewaypath) as candidatewayfile:
        filelines = candidatewayfile.readlines()
        linesnum = len(filelines)
        finalline = []  #存储最终路线,可能为多条,随着坐标点的迭代,会变化,直到处理完最有一个坐标点
        for key in eval(filelines[0].strip('\n').split(">>>")[-1]).keys():
            finalline.append([key])
        predict = eval(filelines[0].strip('\n').split(">>>")[-1])
        # 遍历每个坐标点的候选路段
        print(f"需要处理坐标数为:{linesnum}")

        for lineindex in range(1, linesnum):
            templine = []  #存储临时路线
            curdict = eval(filelines[lineindex].strip('\n').split(">>>")[-1])
            flag = 0  #标记之前的路线与当前轨迹点的所有候选路段是否能连通,不能连通,舍弃该轨迹点
            newdic = {}
            for subline in finalline:  #遍历每一条的候选路线
                #print(f"ID{lineindex-1}:{predict},{curdict}")
                for key in curdict.keys():  #遍历每个轨迹点的候选路段
                    connectroute = Common_Functions.InquireConn(
                        subline[-1], key, "connects")  #先查表
                    if connectroute != 0:
                        #print(subline[-1], predict[subline[-1]], key, curdict[key])
                        connectroute = GridMapNavigation.CandidateWay_Connect(
                            subline[-1], predict[subline[-1]], key,
                            curdict[key])  # 双重列表
                        #print(f"next:{connectroute}")
                        if connectroute:
                            flag = 1
                            for line in connectroute:
                                temsubline = copy.deepcopy(subline)
                                temsubline.extend(line)  # 将走通的路线加入到子路线,扩展当前路线
                                templine.append(temsubline)
                                #newdic[line[-1]] = curdict[line[-1]]
                        else:
                            pass
                    else:
                        pass

            if flag == 1:
                finalline.clear()
                predict = curdict
                templine = Common_Functions.DoubleDel(templine)
                templine = Common_Functions.Main_Auxiliary_road(
                    templine)  #去除头尾路段一样的候选路线,路线只有一个路段 不会处理
                templine = Common_Functions.Start_End(
                    templine
                )  # 对于[wayid1,wayid2,wayid3] [wayid1,wayid4,wayid5,wayid3]  去除路段多的,如果包含路段数量一致 暂不处理
                Common_Functions.Sequential_subset(
                    finalline)  # 最后去路线(至少两个及以上的其他路线是其前缀)
                for sub in templine:
                    finalline.append(Common_Functions.del_adjacent(sub))
            else:
                pass
            #print(f"final:{finalline}")
        print("共选出{}条路".format(len(finalline)))
        for sub in finalline:
            print(sub)
            file.write(str(sub) + "\n")
        file.close()
示例#13
0
                dic[subway[0]] = pointCode[1]
        #print(f"{newdf.iloc[row, 1]},{newdf.iloc[row, 2]}CandidateWay>>>{str(dic)}")
        if dic:
            file.write("PointID-" + str(row + 1) + "CandidateWay>>>" +
                       str(dic) + "\n")
    file.close()


import time
start = time.time()
#FindPointCandidateWay_Grid("H:\GPS_Data\Road_Network\BYQBridge\TrunksArea\\b79a4749-6228-4e47-8c1e-4e5c5dce8a53.csv","H:\GPS_Data\Road_Network\BYQBridge\CandidateWay\Grid\BYC","b79a4749-6228-4e47-8c1e-4e5c5dce8a53")
#SelectFinalRoutes("H:\GPS_Data\Road_Network\BYQBridge\CandidateWay\Grid\BYC\\10706a7b-3d56-4551-9a09-debda7d2c032.txt","H:\GPS_Data\Road_Network\BYQBridge\FinalRoutes\Grid\BYC")
# for subpath in Common_Functions.findtxtpath("H:\GPS_Data\Road_Network\BYQBridge\CandidateWay\\NewStrategy"):
#     (tempath, tempfilename) = os.path.split(subpath)  # tempfilename为txt文件名(包含后缀)
#     (trunkname, extension) = os.path.splitext(tempfilename)  # filename 为文件名 extension为后缀
#     csvfile = trunkname + ".csv"
#     FindPointCandidateWay_Grid(
#         os.path.join("H:\GPS_Data\Road_Network\BYQBridge\TrunksArea",csvfile),
#         "H:\GPS_Data\Road_Network\BYQBridge\CandidateWay\Grid\BYC", trunkname)

#最终路线
for subpath in Common_Functions.findtxtpath(
        "H:\GPS_Data\Road_Network\BYQBridge\CandidateWay\Grid\BYC"):
    print(subpath)
    SelectFinalRoutes(
        subpath, "H:\GPS_Data\Road_Network\BYQBridge\FinalRoutes\Grid\BYC")
#FindPointCandidateWay_Grid("H:\GPS_Data\Road_Network\BYQBridge\TrunksArea\\334e4763-f125-425f-ae42-8028245764fe.csv","H:\GPS_Data\Road_Network\BYQBridge\CandidateWay\Grid\BYC","334e4763-f125-425f-ae42-8028245764fe")

#SelectFinalRoutes("H:\GPS_Data\Road_Network\BYQBridge\CandidateWay\Grid\BYC\\99b9e495-22f3-4dd2-81e1-a946b3805229.txt","H:\GPS_Data\Road_Network\BYQBridge\FinalRoutes\Grid\BYC")

print(time.time() - start)
示例#14
0
def TrajectorySplit(csvfilepath, processpath):
    """
    :param csvfilepath: 原始轨迹csv文件
    :param processpath: 存储原轨迹分段之后的csv文件
    :return:
    """
    (path, file) = os.path.split(csvfilepath)
    (filename, extension) = os.path.splitext(file)
    filesavepath = os.path.join(processpath, filename)  #文件分段之后保存的路径
    if not os.path.isdir(filesavepath):
        os.mkdir(filesavepath)
    df = pd.read_csv(csvfilepath,
                     header=None,
                     usecols=[1, 2, 3, 4, 5],
                     names=[0, 1, 2, 3, 4])

    df = df.sort_values(by=0)  # 时间排序
    points_num = df.shape[0]  # 坐标数量
    pd.set_option('display.max_columns', None)
    pd.set_option('display.max_rows', None)
    drop_list = []  # 要删除的索引列表
    df.iloc[:, 0] = pd.to_datetime(df.iloc[:, 0], format="%Y%m%d ")
    for row in range(1, points_num):
        if row == points_num:
            break
        points_dis = Common_Functions.haversine(df.iloc[row, 1], df.iloc[row,
                                                                         2],
                                                df.iloc[row - 1, 1],
                                                df.iloc[row - 1,
                                                        2])  # 相邻坐标点之间的距离
        Time_difference = (df.iloc[row, 0] -
                           df.iloc[row - 1, 0]).seconds  #相邻两个坐标点的时间差,单位:秒
        if points_dis < 0.01:  # 距离小于10米
            drop_list.append(row)
        if Time_difference != 0:
            speed = points_dis / Time_difference  #速度 秒
        else:
            speed = 0
        if speed >= 0.034:
            drop_list.append(row)  #时速大于120 ,0.034时速为122

    newdf = df.drop(drop_list)  # 删除相邻点在10米之内的点和时速大于120的异常点
    newdf = newdf.reset_index(drop=True)
    #Candidate_pointName = filename + ".csv"
    #newdf.to_csv(os.path.join(filesavepath, os.path.join()), index=0,header=0, encoding='utf_8_sig')  #筛选出的被匹配的轨迹点
    #以上为处理所有的相邻点距离小于10米的坐标
    #以下循环为分段
    start_row = 0  #文件分割的起始行数
    endrow = 0  #结束行数
    part_num = 1
    part_name = "part" + str(part_num) + ".csv"
    #tem_df = pd.DataFrame(None)
    Is_Save_flag = 0  #记录该轨迹段是否保存
    for row in range(1, newdf.shape[0]):
        #Time_difference = (newdf.iloc[row, 0] - newdf.iloc[row - 1, 0]).seconds  # 相邻两个坐标点的时间差,单位:秒
        Adjacent_two_points_dis = Common_Functions.haversine(
            newdf.iloc[row, 1], newdf.iloc[row, 2], newdf.iloc[row - 1, 1],
            newdf.iloc[row - 1, 2])  # 相邻坐标点之间的距离
        if Adjacent_two_points_dis > 5:
            endrow = row - 1
            Is_Save_flag = 1
        if row == newdf.shape[0] - 1:
            #tem_df = newdf.loc[start_row:row+1, :]
            endrow = row
            Is_Save_flag = 1
        if Is_Save_flag == 1:
            newdf.loc[start_row:endrow, :].to_csv(os.path.join(
                filesavepath, part_name),
                                                  index=0,
                                                  header=0,
                                                  encoding='utf_8_sig')
            start_row = endrow + 1
            Is_Save_flag = 0
            #tem_df.drop(tem_df.index, inplace=True)
            part_num += 1
            part_name = "part" + str(part_num) + ".csv"
示例#15
0
def BatchSelectFinalRoute(Candidatewaypath, finalroutepath):
    candidatetxts = Common_Functions.findtxtpath(Candidatewaypath)
    for subway in candidatetxts:
        print(subway)
        SelectFinalRoute(subway, finalroutepath)
示例#16
0
def SelectFinalRoute(candidatewaypath, savefinalroutespath):
    """
    根据坐标点的候选路段选出路网的匹配路线
    保存格式为:车辆名:路线(如果不确定,可能为多条),车辆名为txt文件名
    :param candidatewaypath:  坐标点候选路段的txt文件路径,如H:\\CandidateWay\\NewStrategy\\334e4763-f125-425f-ae42-8028245764fe.txt
    :param savefinalroutespath: 最终路线保存路径
    :return:
    """
    #file = open("H:\GPS_Data\Road_Network\BYQBridge\FinalRoutes\\334e4763-f125-425f-ae42-8028245764fe.txt", 'a')

    (tempath, tempfilename) = os.path.split(
        candidatewaypath)  # tempfilename为txt文件名(包含后缀)
    (trunkname, extension) = os.path.splitext(
        tempfilename)  # filename 为传入的csv文件名 extension为后缀
    savetxtfilename = trunkname + '.txt'
    file = open(os.path.join(savefinalroutespath, savetxtfilename), 'a')
    with open(candidatewaypath) as candidatewayfile:
        filelines = candidatewayfile.readlines()
        linesnum = len(filelines)
        finalline = []  #存储最终路线,可能为多条,随着坐标点的迭代,会变化,直到处理完最有一个坐标点
        for key in eval(filelines[0].strip('\n').split(">>>")[-1]).keys():
            finalline.append([key])
        #print(finalline)
        # 遍历每个坐标点的候选路段
        print("需要处理坐标数为:{}".format(linesnum))
        for lineindex in range(1, linesnum):
            templine = []  #存储临时路线
            # 遍历到最后一行
            print(len(finalline))
            print(finalline)
            print("处理坐标{}:{}".format(
                lineindex,
                eval(filelines[lineindex].strip('\n').split(">>>")[-1])))
            #print("处理路段{}".format(eval(filelines[lineindex].strip('\n').split(">>>")[-1])))
            for subline in finalline:
                for key in eval(filelines[lineindex].strip('\n').split(">>>")
                                [-1]).keys():
                    temsubline = []

                    #此代码块只加入key,不加入完整路线
                    print("路段:{}匹配key:{}".format(subline[-1], key))
                    # 只需要查看subline的最后一个路段与路段key是否连通即可,因为subline的连通性是通过测试的
                    connectroute = Common_Functions.InquireConn(
                        subline[-1], key, "connects")  #先查表
                    #connectroute = -1
                    if connectroute != 0 and connectroute != 1:  #表中没有记录 再用简易导航
                        connectroute = MapNavigation.waytoway(
                            subline[-1], key)  # 为列表
                    if connectroute:
                        temsubline = copy.deepcopy(subline)
                        temsubline.append(key)  # 只加入轨迹点所属路段,而不加入这两个路段走通的路线
                        templine.append(temsubline)
                    else:
                        # 此路线不连通,舍弃当前路段key
                        pass
                    """
                    #此代码块是加入完整路线
                    #connectroute = Common_Functions.InquireConn(subline[-1], key,"connects")   #先查表
                    #connectroute = -1
                    connectroute = MapNavigation.Nodirectionwaytoway(subline[-1], key)  # 为列表
                    if subline[-1] == key:
                        temsubline = copy.deepcopy(subline)
                        templine.append(temsubline)
                    #elif connectroute !=0 and connectroute!= 1:   #表中没有记录 再用简易导航
                        #connectroute = MapNavigation.Nodirectionwaytoway(subline[-1], key)  # 为列表
                    elif connectroute:
                        #路段可连通
                        temsubline = copy.deepcopy(subline)
                        temsubline.extend(connectroute[1:])   #将走通的路线加入到子路线,扩展当前路线
                        templine.append(temsubline)
                    else:pass
                    """

                    # print(temsubline)
                    # print(templine)
            finalline.clear()
            #print(templine)
            finalline = Common_Functions.DoubleDel(templine)  #去相邻重复 再去重
            finalline = Common_Functions.Main_Auxiliary_road(
                finalline)  #去除头尾路段一样的候选路线,路线只有一个路段 不会处理
            #print(finalline)
            finalline = Common_Functions.Start_End(
                finalline
            )  # 对于[wayid1,wayid2,wayid3] [wayid1,wayid4,wayid5,wayid3]  去除路段多的,如果包含路段数量一致 暂不处理
            finalline = Common_Functions.Sequential_subset(
                finalline)  # 最后去路线(至少两个及以上的其他路线是其前缀)
        print("共选出{}条路".format(len(finalline)))
        for sub in finalline:
            file.write(str(sub) + "\n")
            file.flush()
        print(finalline)
        file.close()
示例#17
0
def FindPointCandidateWay(csvfilepath, candidatewaypath, candidatewayname):
    """
    处理北野场桥
    找出坐标点的候选路段,此部分已经通过角度(大于90)、距离(大于30米)筛除一部分候选路段
    :param csvfilepath: csv文件路径 例:H:\TrunksArea\\334e4763-f125-425f-ae42-8028245764fe.csv"
    :param candidatewaypath:  轨迹点候选路段保存路径
    :param candidatewayname: 候选路段保存的文件名

    :return:
    """
    if not os.path.isdir(candidatewaypath):
        os.mkdir(candidatewaypath)
    # 读时间 经纬度 网格编号
    #df = pd.read_csv("H:\GPS_Data\Road_Network\BYQBridge\TrunksArea\\334e4763-f125-425f-ae42-8028245764fe.csv",header=None, usecols=[1, 2, 3, 4, 5])
    df = pd.read_csv(csvfilepath, header=None, usecols=[1, 2, 3, 4, 5])
    points_num = df.shape[0]  # 坐标数量
    pd.set_option('display.max_columns', None)
    pd.set_option('display.max_rows', None)
    # print(df.iloc[:,1:4])
    drop_list = []  # 要删除的索引列表
    for row in range(1, points_num):
        if row == points_num:
            break
        points_dis = Common_Functions.haversine(df.iloc[row, 1], df.iloc[row,
                                                                         2],
                                                df.iloc[row - 1, 1],
                                                df.iloc[row - 1,
                                                        2])  # 相邻坐标点之间的距离
        if points_dis < 0.01:  # 距离小于10米
            drop_list.append(row)
    # print(drop_list)
    newdf = df.drop(drop_list)  # 删除相邻点在10米之内的点
    # print(newdf.iloc[:,1:3])
    newdf = newdf.reset_index(drop=True)
    #file = open("H:\GPS_Data\Road_Network\BYQBridge\CandidateWay\\NewStrategy\\334e4763-f125-425f-ae42-8028245764fe.txt", 'a')
    txtname = candidatewayname + ".txt"
    file = open(os.path.join(candidatewaypath, txtname), 'a')
    print("本轨迹段共查找坐标点数为:{}".format(newdf.shape[0]))
    for row in range(newdf.shape[0]):
        if row == 0:
            #print("处理起始坐标点{}".format([newdf.iloc[row, 1], newdf.iloc[row, 2], newdf.iloc[row, 3], newdf.iloc[row, 4]]))
            dic = Common_Functions.Find_Candidate_Route([
                newdf.iloc[row, 1], newdf.iloc[row, 2], newdf.iloc[row, 3],
                newdf.iloc[row, 4]
            ], [
                newdf.iloc[row + 1, 1], newdf.iloc[row + 1, 2],
                newdf.iloc[row + 1, 3], newdf.iloc[row + 1, 4]
            ],
                                                        flag=1)
            if dic:  # 有候选路段才保存
                file.write("PointID-" + str(row + 1) + "CandidateWay>>>" +
                           str(dic) + "\n")
        elif row == newdf.shape[0] - 1:
            #print("处理终点坐标点{}".format([df.iloc[row - 1, 2], df.iloc[row - 1, 3], df.iloc[row, 2], df.iloc[row, 3]]))
            dic = Common_Functions.Find_Candidate_Route([
                newdf.iloc[row - 1, 1], newdf.iloc[row - 1, 2],
                newdf.iloc[row - 1, 3], newdf.iloc[row - 1, 4]
            ], [
                newdf.iloc[row, 1], newdf.iloc[row, 2], newdf.iloc[row, 3],
                newdf.iloc[row, 4]
            ],
                                                        flag=2)
            if dic:
                file.write("PointID-" + str(row + 1) + "CandidateWay>>>" +
                           str(dic) + "\n")

        else:
            dis1 = Common_Functions.haversine(newdf.iloc[row,
                                                         1], newdf.iloc[row,
                                                                        2],
                                              newdf.iloc[row - 1, 1],
                                              newdf.iloc[row - 1, 2])
            dis2 = Common_Functions.haversine(newdf.iloc[row,
                                                         1], newdf.iloc[row,
                                                                        2],
                                              newdf.iloc[row + 1, 1],
                                              newdf.iloc[row + 1, 2])
            # 找相邻最近的点做为轨迹方向
            if dis2 > dis1:
                #print("处理终点坐标点{}".format([newdf.iloc[row - 1, 1], newdf.iloc[row - 1, 2], newdf.iloc[row - 1, 3], newdf.iloc[row - 1, 4]]))
                dic = Common_Functions.Find_Candidate_Route([
                    newdf.iloc[row - 1, 1], newdf.iloc[row - 1, 2],
                    newdf.iloc[row - 1, 3], newdf.iloc[row - 1, 4]
                ], [
                    newdf.iloc[row, 1], newdf.iloc[row, 2], newdf.iloc[row, 3],
                    newdf.iloc[row, 4]
                ],
                                                            flag=2)

            else:
                #print("处理起始坐标点{}".format([newdf.iloc[row, 1], newdf.iloc[row, 2], newdf.iloc[row, 3], newdf.iloc[row, 4]]))
                dic = Common_Functions.Find_Candidate_Route([
                    newdf.iloc[row, 1], newdf.iloc[row, 2], newdf.iloc[row, 3],
                    newdf.iloc[row, 4]
                ], [
                    newdf.iloc[row + 1, 1], newdf.iloc[row + 1, 2],
                    newdf.iloc[row + 1, 3], newdf.iloc[row + 1, 4]
                ],
                                                            flag=1)
            if dic:
                file.write("PointID-" + str(row + 1) + "CandidateWay>>>" +
                           str(dic) + "\n")

    file.close()
def Nodirectionwaytoway(way_id1,way_id2,max_sum=8):
    """
    无方向  有交点就会认为通行
    :param way_id1:
    :param way_id2:
    :param max_sum:
    :return:
    """
    if way_id1 == way_id2:
        return [way_id1,way_id2]
    finalroute = []
    node_id = TwoWay_intersection(way_id1, way_id2)  #两条路段交点
    if node_id:
        if JudgeTwoWay(way_id1,way_id2):
            finalroute.extend([way_id1, way_id2])
            Common_Functions.SaveRoutesConn("connects", way_id1, way_id2, 1)
            return finalroute
        else:
            Common_Functions.SaveRoutesConn("connects", way_id1, way_id2, 0)
            return False
    else:
        #两条路段没有直接交点
        Candidate_Routes = [[way_id1]]  # 候选路线
        flag = 0
        count = 0   #迭代多少次之后仍然没有找到可行路线,则认为不可走
        exitflag = 0   #标记是否是通过找到满足条件的路线而退出的
        grid1 = Getway_startendnode_grid(way_id1,flag=0)
        startx = grid1[0]
        starty = grid1[1]
        grid2 = Getway_startendnode_grid(way_id1, flag=0)
        Endx = grid2[0]
        Endy = grid2[1]
        while True:
            temCandidate_Routes = []  # 存储当前这一轮新的候选路线
            AllNextways = []
            MaxDel = []   #存因路段数目大于阈值,而筛除的路线
            for sub in Candidate_Routes:
                if way_id2 in sub:
                    flag = 1
                    break
                if len(sub) > max_sum:   #防止寻找时间过长,如果目的是为了查找路线,可将此条件删除
                    MaxDel.append(sub)
            for sub in MaxDel:
                Candidate_Routes.remove(sub)
            if len(Candidate_Routes)==0:
                flag = 1
                exitflag = 1
            if count==8:
                flag=1
                exitflag = 1
            if flag == 1:
                break
            for subroute in Candidate_Routes:
                # subroute 表示正在处理的路线
                preways = subroute   #表示当前路线已有的路段
                processingway = subroute[-1]  # 表示要处理的路段
                nextway = NodirectionFindNextWay(processingway,preways)  # 下一步的可选路段

                if len(nextway)==0:
                    #当前路线下一步没有能走的路
                    pass
                else:
                    AllNextways.extend(nextway)
                    for next in nextway:
                        temroute = copy.deepcopy(subroute)
                        temroute.append(next)
                        temCandidate_Routes.append(temroute)

            count += 1
            Candidate_Routes.clear()
            Candidate_Routes = temCandidate_Routes
            Candidate_Routes = Common_Functions.Double_layer_list(Candidate_Routes)
            Candidate_Routes = Common_Functions.Main_Auxiliary_road(Candidate_Routes)  # 去除头尾路段一样的候选路线
            Candidate_Routes = Common_Functions.Start_End(Candidate_Routes)  # 对于[wayid1,wayid2,wayid3] [wayid1,wayid4,wayid5,wayid3]  去除路段多的,如果包含路段数量一致 暂不处理
            Candidate_Routes = Common_Functions.Sequential_subset(Candidate_Routes)  # 最后去前缀
            #print(len(Candidate_Routes))
            delsub = []
            for sub in Candidate_Routes:
                #判断行驶方向
                secondgrid = Getway_startendnode_grid(sub[-1], flag=0)
                if secondgrid:
                    curx = secondgrid[0]
                    cury = secondgrid[1]
                    if Endx > startx and Endy>starty:   #路段way_id2 在way_id1 的右上部
                        if curx < startx and cury < starty:
                            delsub.append(sub)            #此路线方向向左下部走  删除此路线
                    if Endx > startx and Endy < starty:  # 路段way_id2 在way_id1 的右下部
                        if curx < startx and cury > starty:
                            delsub.append(sub)  # 此路线方向向左上部走  删除此路线
                    if Endx <startx and Endy < starty:  # 路段way_id2 在way_id1 的左下部
                        if curx > startx and cury > starty:
                            delsub.append(sub)  # 此路线方向向右上部走  删除此路线
                    if Endx < startx and Endy > starty:  # 路段way_id2 在way_id1 的左上部
                        if curx > startx and cury < starty:
                            delsub.append(sub)  # 此路线方向向右上部走  删除此路线
                else:
                    delsub.append(sub)


            for sub in Common_Functions.Double_layer_list(delsub):
                Candidate_Routes.remove(sub)
            #print(len(Candidate_Routes))
            if len(AllNextways)==0:
                #所有的候选路线都没有下一步路可走
                flag=1
                exitflag = 1
        minnum = float("inf")
        if exitflag==1:
            #证明是循环跳出不是因为找到路径跳出的
            Common_Functions.SaveRoutesConn("connects", way_id1, way_id2, 0)
            return False
        Deleteways = []
        #print(Candidate_Routes)
        for sub in Candidate_Routes:
            #由于以上为没有方向的判断,所以在此循环中要加入方向的判断
            if way_id2 in sub:
                if len(sub)==1:
                    return sub
                elif len(sub)==2 and JudgeTwoWay(sub[0],sub[1]):
                    pass
                elif len(sub) >= 3 and JudgeLines(sub):
                    pass
                else:
                    Deleteways.append(sub)
            else:
                Deleteways.append(sub)
        if len(Deleteways)!=0:
            for delsub in Common_Functions.Double_layer_list(Deleteways):
                Candidate_Routes.remove(delsub)
        if len(Candidate_Routes)==0:
            Common_Functions.SaveRoutesConn("connects", way_id1, way_id2, 0)
            return False
        for sub in Candidate_Routes:
            if way_id2 in sub:
                if len(sub) < minnum:
                    finalroute = sub
                    minnum = len(sub)
            else:
                pass
        if len(finalroute)==0:
            Common_Functions.SaveRoutesConn("connects", way_id1, way_id2,0)
            return False
        else:
            Common_Functions.SaveRoutesConn("connects", way_id1, way_id2, 1)
            return finalroute
def waytoway(way_id1,way_id2,max_num=8):
    """
    实现从way_id1到way_id2的路线规划,当此函数完全用作简易导航,可设置max_num为无穷
    设置 max_num 与Count 的原因为防止查找完全不通的两个路段而耗费过长的时间
    有方向通行
    问题:即使很近的两个路段(实际短距离不能通行),但是会花费较多的时间去判断是否能通行
    47574526,403874395两个路段不能互通 但是只在北野场桥一部分就花费了5分钟去判断可行性
    :param way_id1:
    :param way_id2:
    :return:
    首先判断两个路段是否有交集,有交集则这两条路不需要经过其他路线的连接
    """
    if way_id1 == way_id2:
        return [way_id1,way_id2]
    finalroute = []
    node_id = TwoWay_intersection(way_id1, way_id2)  #两条路段交点
    if node_id:
        if JudgeTwoWay(way_id1,way_id2):
            finalroute.extend([way_id1, way_id2])
            Common_Functions.SaveRoutesConn("connects", way_id1, way_id2, 1)
            return finalroute
        else:
            Common_Functions.SaveRoutesConn("connects", way_id1, way_id2, 0)
            return False
    else:
        #两条路段没有直接交点
        Candidate_Routes = [[way_id1]]  # 候选路线
        flag = 0
        count = 0  # 迭代多少次之后仍然没有找到可行路线,则认为不可走
        exitflag = 0  #标记是否是通过找到满足条件的路线而退出的
        grid1 = Getway_startendnode_grid(way_id1, flag=0)
        startx = grid1[0]
        starty = grid1[1]
        grid2 = Getway_startendnode_grid(way_id1, flag=0)
        Endx = grid2[0]
        Endy = grid2[1]
        startendwaydis = twoway_distance(way_id1, way_id2)+ 0.01 # 加1000米弹性范围,0.0003为30米
        while True:
            print(Candidate_Routes)

            temCandidate_Routes = []  # 存储当前这一轮新的候选路线
            AllNextways = []
            print(count)
            for subroute in Candidate_Routes:
                # subroute 表示正在处理的路线
                processingway = subroute[-1]  # 表示要处理的路段
                wayflag,nextway = FindNextWay(processingway,subroute,way_id2)  # 下一步的可选路段
                #wayflag为FALSE 标记wayid2在nextway,但是由于方向问题,被删除,所以直接判定为不通
                if not wayflag:
                    Common_Functions.SaveRoutesConn("connects", way_id1, way_id2, 0)
                    return False

                if len(nextway) == 0:
                    # 当前路线下一步没有能走的路
                    pass
                else:
                    AllNextways.extend(nextway)
                    for next in nextway:
                        temroute = copy.deepcopy(subroute)
                        temroute.append(next)
                        temCandidate_Routes.append(temroute)
            if len(AllNextways)==0:
                #所有的候选路线都没有下一步路可走
                flag=1
                exitflag = 1
            count += 1
            Candidate_Routes.clear()
            Candidate_Routes = temCandidate_Routes
            Candidate_Routes = Common_Functions.Double_layer_list(Candidate_Routes)
            Candidate_Routes = Common_Functions.Main_Auxiliary_road(Candidate_Routes)  # 去除头尾路段一样的候选路线
            Candidate_Routes = Common_Functions.Start_End(Candidate_Routes)  # 对于[wayid1,wayid2,wayid3] [wayid1,wayid4,wayid5,wayid3]  去除路段多的,如果包含路段数量一致 暂不处理
            Candidate_Routes = Common_Functions.Sequential_subset(Candidate_Routes)  # 最后去前缀
            delsub = []
            for sub in Candidate_Routes:
                if way_id2 in sub:
                    flag = 1
                    break
            if len(Candidate_Routes) == 0:
                flag = 1
                exitflag = 1
            if count == max_num:
                flag = 1
                exitflag = 1

            if flag == 1:
                break
            for sub in Candidate_Routes:
                if len(sub) >= 3:
                    if JudgeLines(sub):  # 判断当前路线是否能通
                        for i in combinations(sub,2):
                            Common_Functions.SaveRoutesConn("connects", i[0],i[1], 1)

                    elif not JudgeLines(sub) and way_id2 in sub:  # 目标路段在子路线中  但是不能走通
                        Common_Functions.SaveRoutesConn("connects", way_id1, way_id2, 0)
                        return False
                    else:
                        delsub.append(sub)
                        continue
                elif len(sub) == 2:
                    if JudgeTwoWay(sub[0], sub[1]):
                        Common_Functions.SaveRoutesConn("connects", sub[0], sub[1], 1)
                        pass
                    elif JudgeTwoWay(sub[0], sub[1]) and way_id2 in sub:  # 目标路段在子路线中  但是不能走通
                        Common_Functions.SaveRoutesConn("connects", way_id1, way_id2, 0)
                        return False
                    else:
                        delsub.append(sub)
                        continue
                else:
                    pass
            for sub in Candidate_Routes:
                # 判断行驶方向
                secondgrid = Getway_startendnode_grid(sub[-1], flag=0)
                if secondgrid:
                    curx = secondgrid[0]
                    cury = secondgrid[1]
                    if Endx > startx and Endy > starty:  # 路段way_id2 在way_id1 的右上部
                        if abs(startx - curx) <= 5 or abs(starty - cury) <= 5:  # 防止道路过近,出现偏差,方向加500米偏差
                            pass
                        elif curx <= startx and cury <= starty:
                            delsub.append(sub)  # 此路线方向向左下部走  删除此路线
                    if Endx > startx and Endy < starty:  # 路段way_id2 在way_id1 的右下部
                        if abs(startx - curx) <= 5 or abs(starty - cury) <= 5:  # 防止道路过近,出现偏差,方向加500米偏差
                            pass
                        elif curx < startx and cury > starty:
                            delsub.append(sub)  # 此路线方向向左上部走  删除此路线
                    if Endx < startx and Endy < starty:  # 路段way_id2 在way_id1 的左下部
                        if abs(startx - curx) <= 5 or abs(starty - cury) <= 5:  # 防止道路过近,出现偏差,方向加500米偏差
                            pass
                        elif curx > startx and cury > starty:
                            delsub.append(sub)  # 此路线方向向右上部走  删除此路线
                    if Endx < startx and Endy > starty:  # 路段way_id2 在way_id1 的左上部
                        if abs(startx - curx) <= 5 or abs(starty - cury) <= 5:  # 防止道路过近,出现偏差,方向加500米偏差
                            pass
                        elif curx > startx and cury < starty:
                            delsub.append(sub)  # 此路线方向向右上部走  删除此路线
                else:
                    pass

                temstaryendwaydis = twoway_distance(way_id1, sub[-1])
                if temstaryendwaydis > startendwaydis:
                    delsub.append(sub)
            for sub in Common_Functions.Double_layer_list(delsub):
                Candidate_Routes.remove(sub)

        if exitflag==1:
            #证明是循环跳出不是因为找到路径跳出的
            Common_Functions.SaveRoutesConn("connects", way_id1, way_id2, 0)
            return False
        Deleteways = []
        for sub in Candidate_Routes:
            if way_id2 in sub:
                if len(sub) == 1:
                    return sub
                elif len(sub) == 2 and JudgeTwoWay(sub[0], sub[1]):
                    pass
                elif len(sub) >= 3 and JudgeLines(sub):
                    for i in combinations(sub, 2):
                        Common_Functions.SaveRoutesConn("connects", i[0], i[1], 1)
                    pass
                else:
                    Deleteways.append(sub)
            else:
                Deleteways.append(sub)
        if len(Deleteways)!=0:
            for delsub in Common_Functions.Double_layer_list(Deleteways):
                Candidate_Routes.remove(delsub)
        if len(Candidate_Routes)==0:
            Common_Functions.SaveRoutesConn("connects", way_id1, way_id2, 0)
            return False
        minnum = float("inf")
        for sub in Candidate_Routes:
            if way_id2 in sub:
                if len(sub) < minnum:
                    finalroute = sub
                    minnum = len(sub)
            else:
                pass
        if len(finalroute)==0:
            Common_Functions.SaveRoutesConn("connects", way_id1, way_id2, 0)
            return False

        else:
            Common_Functions.SaveRoutesConn("connects", way_id1, way_id2, 1)
            return finalroute