def initialize_networks(self): netD = networks.define_D2(self.opt) if self.opt.isTrain else None if self.opt.isTrain and self.opt.which_iter_D2>0: print_network(netD) netD = util.load_network(netD, 'D2', self.opt.which_iter_D2 , self.opt) return netD
def initialize_networks(self): if 'cityscapes' in self.opt.dataset: aspect_ratio = 2 else: aspect_ratio = 1 generator = ProGANGenerator(max_dim=self.opt.max_dim, rgb=self.opt.rgb, aspect_ratio=aspect_ratio).cuda() discriminator = ProGANDiscriminator(max_dim=self.opt.max_dim, rgb=self.opt.rgb, aspect_ratio=aspect_ratio).cuda() print_network(generator) print_network(discriminator) return generator, discriminator
def initialize_networks(self, D_inputs=0): if 'cityscapes' in self.opt.dataset: aspect_ratio = 2 else: aspect_ratio = 1 if not D_inputs: D_inputs = self.opt.num_semantics generator = ProGANGenerator(max_dim=self.opt.max_dim, rgb=self.opt.rgb, num_semantics=self.opt.num_semantics, T=self.opt.T, aspect_ratio=aspect_ratio).cuda() discriminator = ProGANDiscriminator(max_dim=self.opt.max_dim, rgb=self.opt.rgb, num_semantics=D_inputs, aspect_ratio=aspect_ratio).cuda() print_network(generator) print_network(discriminator) return generator, discriminator