示例#1
0
 def __init__(self, *args, **kwargs):
     # Run the constructors for the parent classes
     ModelFitterCore.__init__(self, *args, **kwargs)
     AbstractCrossValidator.__init__(self)
     # Handle case of deserialize
     if "observedTS" in self.__dict__.keys():
         self.numPoint = len(self.observedTS)
示例#2
0
 def __init__(self, modelSpecification, observedTS, parametersToFit,
       trainIdxs=None, testIdxs=None,  **kwargs):
     """
     Parameters
     ----------
     modelSpecification: str
         antimony model
     observedTS: NamedTimeseries
     parametersToFit: list-str/SBstoat.Parameter/None
         parameters in the model that you want to fit
         if None, no parameters are fit
     trainIdxs: list-int
         rows of observedData used for estimating parameters
     testIdxs: list-int
         rows of observedData used for scoring fit
     """
     super().__init__()
     self.trainIdxs = trainIdxs
     self.testIdxs = testIdxs
     self.observedTS = observedTS
     if self.trainIdxs is None:
         self.trainIdxs = list(range(len(self.observedTS)))
     if self.testIdxs is None:
         self.testIdxs = list(range(len(self.observedTS)))
     self.trainTS = observedTS[self.trainIdxs]
     self.testTS = observedTS[self.testIdxs]
     self.modelFitter = ModelFitterCore(modelSpecification, self.trainTS,
           parametersToFit, **kwargs)
     self.columns = self.modelFitter.selectedColumns
     self.testObservedArr = self.testTS[self.columns]
示例#3
0
 def testNoneParameters(self):
     if IGNORE_TEST:
         return
     self._init()
     fitter = ModelFitterCore(th.ANTIMONY_MODEL, self.timeseries, None)
     fitter.fitModel()
     self.assertIsNone(fitter.params)
     self.assertGreater(len(fitter.fittedTS), 0)
示例#4
0
 def test(method):
     fitter = ModelFitterCore(th.ANTIMONY_MODEL, self.timeseries,
           list(th.PARAMETER_DCT.keys()), fitterMethods=method)
     fitter.fitModel()
     for parameter in ["k1", "k2", "k3", "k4", "k5"]:
         diff = np.abs(th.PARAMETER_DCT[parameter]
               - dct[parameter])
         frac = diff/dct[parameter]
         self.assertLess(diff/dct[parameter], 5.0)
示例#5
0
 def calc(method, probNan=0.2):
     nanTimeseries = self.timeseries.copy()
     for col in self.timeseries.colnames:
         for idx in range(len(nanTimeseries)):
             if np.random.random() <= probNan:
                 nanTimeseries[col][idx] = np.nan
     fitter = ModelFitterCore(th.ANTIMONY_MODEL, nanTimeseries,
           list(th.PARAMETER_DCT.keys()), fitterMethods=method)
     fitter.fitModel()
     diff = np.abs(th.PARAMETER_DCT[PARAMETER]
           - fitter.params.valuesdict()[PARAMETER])
     return diff
示例#6
0
 def test(col, func, maxDifference=0.0):
     timeseries = self.timeseries.copy()
     timeseries[col] = func(timeseries)
     fittedDataTransformDct = {col: func}
     fitter = ModelFitterCore(th.ANTIMONY_MODEL, timeseries,
           list(th.PARAMETER_DCT.keys()),
           fittedDataTransformDct=fittedDataTransformDct)
     fitter.fitModel()
     for name in self.fitter.params.valuesdict().keys():
         value1 = self.fitter.params.valuesdict()[name]
         value2 = fitter.params.valuesdict()[name]
         diff = np.abs(value1-value2)
         self.assertLessEqual(diff, maxDifference)
示例#7
0
 def test(method):
     compareDct = {}
     for numFitRepeat in NUM_FIT_REPEATS:
         fitter = ModelFitterCore(th.ANTIMONY_MODEL, self.timeseries,
               list(th.PARAMETER_DCT.keys()), fitterMethods=method,
               numFitRepeat=numFitRepeat)
         fitter.fitModel()
         compareDct[numFitRepeat] = self.checkParameterValues()
     for parameter in ["k1", "k2", "k3", "k4", "k5"]:
         first = NUM_FIT_REPEATS[0]
         last = NUM_FIT_REPEATS[1]
         self.assertLessEqual(compareDct[first][parameter],
               compareDct[last][parameter])
示例#8
0
 def testSelectCompatibleIndices(self):
     if IGNORE_TEST:
         return
     SIZE = 10
     SUB_SIZE = 5
     bigTimes = np.array(range(SIZE))
     smallTimes = np.random.permutation(bigTimes)[:SUB_SIZE]
     smallTimes = np.sort(smallTimes)
     resultArr = ModelFitterCore.selectCompatibleIndices(
         bigTimes, smallTimes)
     np.testing.assert_array_equal(smallTimes, resultArr)
示例#9
0
 def testGetFittedModel(self):
     if IGNORE_TEST:
         return
     self._init()
     fitter1 = ModelFitterCore(th.ANTIMONY_MODEL, self.timeseries,
           list(th.PARAMETER_DCT.keys()))
     fitter1.fitModel()
     fittedModel = fitter1.getFittedModel()
     fitter2 = ModelFitterCore(fittedModel, self.timeseries,
           list(th.PARAMETER_DCT.keys()))
     fitter2.fitModel()
     # Should get same fit without changing the parameters
     std1 = np.var(fitter1.residualsTS.flatten())
     std2 = np.var(fitter2.residualsTS.flatten())
     if tcn.IGNORE_ACCURACY:
         return
     self.assertTrue(np.isclose(std1, std2, rtol=0.1))
示例#10
0
 def testrpConstruct(self):
     if IGNORE_TEST:
         return
     fitter = ModelFitterCore.rpConstruct()
     def updateAttr(attr):
         if not attr in fitter.__dict__.keys():
             fitter.__setattr__(attr, None)
     #
     updateAttr("roadrunnerModel")
     updateAttr("observedTS")
     self.assertIsNone(self.fitter.roadrunnerModel)
     self.assertIsNone(fitter.observedTS)
示例#11
0
    def testInitializeParams(self):
        if IGNORE_TEST:
            return
        LOWER = -10
        UPPER = -1
        VALUE = -5
        NEW_SPECIFICATION = mf.ParameterSpecification(lower=LOWER,
                                                      upper=UPPER,
                                                      value=VALUE)
        DEFAULT_SPECIFICATION = mf.ParameterSpecification(
            lower=mf.PARAMETER_LOWER_BOUND,
            upper=mf.PARAMETER_UPPER_BOUND,
            value=(mf.PARAMETER_LOWER_BOUND + mf.PARAMETER_UPPER_BOUND) / 2,
        )

        def test(params, exceptions=[]):
            def check(parameter, specification):
                self.assertEqual(parameter.min, specification.lower)
                self.assertEqual(parameter.max, specification.upper)
                self.assertEqual(parameter.value, specification.value)

            #
            names = params.valuesdict().keys()
            for name in names:
                parameter = params.get(name)
                if name in exceptions:
                    check(parameter, NEW_SPECIFICATION)
                else:
                    check(parameter, DEFAULT_SPECIFICATION)

        #
        fitter = ModelFitterCore(
            self.fitter.modelSpecification,
            self.fitter.observedTS,
            #self.fitter.parametersToFit,
            parameterDct={"k1": NEW_SPECIFICATION},
        )
        params = fitter.mkParams()
        test(params, exceptions=["k1"])
        #
        params = self.fitter.mkParams()
        test(params, [])
        #
        fitter = ModelFitterCore(
            self.fitter.modelSpecification,
            self.fitter.observedTS,
            parameterDct={"k1": (LOWER, UPPER, VALUE)},
        )
        params = fitter.mkParams()
        test(params, exceptions=["k1"])
示例#12
0
class ModelFitterWrapper(AbstractFitter):

    def __init__(self, modelSpecification, observedTS, parametersToFit,
          trainIdxs=None, testIdxs=None,  **kwargs):
        """
        Parameters
        ----------
        modelSpecification: str
            antimony model
        observedTS: NamedTimeseries
        parametersToFit: list-str/SBstoat.Parameter/None
            parameters in the model that you want to fit
            if None, no parameters are fit
        trainIdxs: list-int
            rows of observedData used for estimating parameters
        testIdxs: list-int
            rows of observedData used for scoring fit
        """
        super().__init__()
        self.trainIdxs = trainIdxs
        self.testIdxs = testIdxs
        self.observedTS = observedTS
        if self.trainIdxs is None:
            self.trainIdxs = list(range(len(self.observedTS)))
        if self.testIdxs is None:
            self.testIdxs = list(range(len(self.observedTS)))
        self.trainTS = observedTS[self.trainIdxs]
        self.testTS = observedTS[self.testIdxs]
        self.modelFitter = ModelFitterCore(modelSpecification, self.trainTS,
              parametersToFit, **kwargs)
        self.columns = self.modelFitter.selectedColumns
        self.testObservedArr = self.testTS[self.columns]
    
    @property
    def parameters(self):
        """
        Returns
        -------
        lmfit.Parameters
        """
        return self.modelFitter.params

    def fit(self):
        """
        Estimates parameters.
        Parameters
        ----------
        
        Returns
        -------
        """
        self.modelFitter.fitModel()

    def score(self):
        """
        Returns an R^2 for predicting testData
        Parameters
        ----------
        
        Returns
        -------
        float
        """
        fullFittedTS = self.modelFitter.runSimulation(
              parameters=self.modelFitter.params,
              modelSpecification=self.modelFitter.modelSpecification,
              endTime=self.observedTS.end,
              numPoint=len(self.observedTS),
              _logger=self.modelFitter.logger,
              _loggerPrefix=self.modelFitter._loggerPrefix,
              )
        testFittedArr = fullFittedTS[self.modelFitter.selectedColumns]
        testFittedArr = testFittedArr[self.testIdxs, :]
        residualsArr = self.testObservedArr - testFittedArr
        rsq = 1 - np.var(residualsArr.flatten())  \
              / np.var(self.testObservedArr.flatten())
        return rsq
示例#13
0
 def test(parametersToFit):
     result = ModelFitterCore.mkParameters(
         parametersToFit=parametersToFit)
     self.assertTrue(isinstance(result, lmfit.Parameters))
     self.assertEqual(len(result.valuesdict()), len(parametersToFit))